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Abstract

Classical elasticity is concerned with bodies that can be modeled as smooth
manifolds endowed with a reference metric that represents local equilibrium dis-
tances between neighboring material elements. The elastic energy associated with
the configuration of a body in classical elasticity is the sum of local contributions
that arise from a discrepancy between the actual metric and the reference metric. In
contrast, the modeling of defects in solids has traditionally involved extra structure
on the material manifold, notably torsion to quantify the density of dislocations
and non-metricity to represent the density of point defects. We show that all the
classical defects can be described within the framework of classical elasticity using
tensor fields that only assume a metric structure. Specifically, bodies with singular
defects can be viewed as affine manifolds; both disclinations and dislocations are
captured by the monodromy that maps curves that surround the loci of the defects
into affine transformations. Finally, we show that two dimensional defects with triv-
ial monodromy are purely local in the sense that if we remove from the manifold
a compact set that contains the locus of the defect, the punctured manifold can be
isometrically embedded in a Euclidean space.

1. Introduction

1.1. Background

The study of defects in solids and the mechanical properties of solids with
imperfections is a longstanding theme in material science. There exists a wide
range of prototypical crystalline defects, among which are dislocations, discli-
nations, and point defects. An influential viewpoint since the 1950s has been to
describe defects in solids using differential geometric tools. That is, intermolecular
effects are smeared out and the defective solid is modeled as a smooth differentiable
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manifold equipped with a structure that captures its intrinsic geometry, and notably
the defects.

The pioneers in the adoption of geometric fields to describe defects in crystalline
solids were Kondo [16], Bilby et al. [4,5], and Kröner [17]. Their approach
was motivated by the common practice in crystallography—Burgers circuits, that
are based on discrete steps with respect to a local crystalline structure, and the
identification of defects with a discrepancy between closed loops in real space
and closed loops in the discrete crystallographic space. The theory of Kondo and
Bilby connects this crystallographic practice to a general theory of continuously
dislocated crystals. Its central pillar is a notion of parallelism—it is assumed that one
knows how to translate vectors in parallel from one point in the body to another. This
premise reflects the existence of an underlying lattice, and parallelism is defined
such that the components of the translated vector remain constant with respect to
the lattice axes.

For defects of dislocation-type, Bilby et al. [4] assume a property of distant
parallelism, which amounts to the assumption that a lattice can be defined globally
far enough from the locus of the defect, so that the parallel transport of vectors with
respect to this lattice is path-independent (recall that in solid-state physics a lattice
is commonly assumed infinite). Mathematically, their assumption amounts to the
postulation of a global frame field, which automatically defines a connection with
respect to which this frame field is parallel. This connection is the main geometric
structure used by Kondo and Bilby et al. to describe the state of a dislocated crystal.

A relation between material properties and a material connection was rigor-
ously defined in Wang [27]. Wang built on Noll’s point of view [22], whereby the
mechanical properties of a solid are fully encoded in its constitutive relations. In
particular, these relations define a collection of symmetry-preserving maps between
tangent spaces at different points. Intuitively, this collection of maps determines
in what sense a material element at one point is the “same” as a material element
at another point. Mathematically, this collection of maps can be identified with a
family of sections of the principal bundle of frame fields. Each such section defines
a connection. If the connection is independent of the chosen section, the material
symmetries are said to be associated with a material connection. As Wang shows,
a material connection exists only in the case of discrete symmetries.

Every connection carries two associated geometric fields: curvature and torsion.
A non-vanishing curvature implies that vectors transported in parallel along closed
loops do not regain their initial value. For a connection that admits a parallel frame
field, the curvature is always zero, and the manifold is then said to be flat. A non-
vanishing torsion is associated with an asymmetry in the law of parallel transport,
or with the failure of parallelograms to be closed. Torsion has been traditionally
associated with the presence of non-zero Burgers vectors, and more specifically, as a
measure for the density of dislocations (see the recent paper of Ozakin and Yavari
[23] for a modern derivation of the relation between the two). Thus, a dislocated
crystal is commonly described as a manifold equipped with a connection that has
zero curvature but non-zero torsion, a manifold known as a Weitzenböck manifold.

Another thoroughly-studied type of defect is a disclination. Like dislocations,
disclinations are detected by the parallel transport of vectors. If dislocations are
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translational defects, disclinations are rotational defects. A vector translated in
parallel along a closed loop that surrounds a disclination line does not return to its
initial value. The geometric interpretation of this effect is the presence of a non-zero
curvature. There is in fact a close analogy between dislocations and disclinations:
dislocations are measured in terms of a translational Burgers vector whereas discli-
nations are measured in terms of an angular Frank vector. In a dislocated solid,
torsion measures the Burgers vector density, whereas in a disclinated body, curva-
ture measures the density of the Frank vector. See Romanov [24], Derezin and
Zubov [7] and Yavari and Goriely [31] for recent works on the modeling of
disclinations in solids.

A third type of defect is a point defect. The two prototypical examples of a
point defect are a vacancy, in which material is removed and the resulting hole is
“welded”, and an intersticial, in which extra material is inserted at a point. Point
defects have also been described using differential geometric fields, and in this
context, Kröner introduced the notion of non-metricity [18]—a solid with point
defects is modeled as a manifold equipped with a connection and a metric, but the
connection is not compatible with the metric, that is, parallel transport does not
preserve the Riemannian inner-product. See Katanaev and Volovick [14], Miri
and Rivier [21], and Yavari and Goriely [30] for more recent work.

The description of combinations of the above mentioned defect types has been
addressed by several authors. In particular, Katanaev and Volovich [14], consider
all three defect types. Miri and Rivier [21] also consider different types of topo-
logical defects, and raise two questions that are especially relevant to the present
work: (i) can dislocations and disclinations co-exist? and (ii) do dislocations and
disclinations “survive” in isotropic solids where there is no lattice to dislocate?
Both questions will be addressed below.

Finally, we mention the recent series of papers by Yavari and Goriely [29–
31], which present a very comprehensive description of the Cartan moving frame
formalism, and its uses in the modeling of the three types of defects. In addition
to a systematic use of the Riemann–Cartan formalism to simplify calculations in
both Riemannian and non-Riemannian manifolds, these papers make a distinctive
contribution: for each type of defect they solve specific yet representative examples,
and calculate residual stresses within the framework of nonlinear elasticity.

1.2. Outline of Results

The present work is motivated by a renewed interest in materials that have a
non-trivial intrinsic geometry. There is a wealth of recent work on pattern formation
in living tissues such as leaves (Liang and Mahadevan [19]), fungi (Dervaux and
Ben Amar [8]), flowers (Forterre et al. [11] and Marder and Papanicolaou
[20]), pines (Dawson et al. [6]), seed pods (Armon et al. [2]), and isolated cells
(Aharoni et al.[1]). There is also a growing literature on engineered soft materials,
for example, (Klein et al. [15] and Wu et al. [28]). These tissues can be attributed
a natural metric structure, and are essentially isotropic.

The interest in isotropic materials endowed with a non-trivial geometry leads us
to reconsider whether there can be defects in a medium that is inherently disordered.
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This is especially pressing in light of Wang’s conclusion that a material connection
can be defined unambiguously only in the presence of discrete symmetries. Even
before that, we should clarify what makes a solid defect-free.

As our basic model for an isotropic defect-free elastic medium we take a finite-
dimensional Riemannian manifold that can be embedded isometrically in a Euclid-
ean space of the same dimension. The Riemannian structure, which is completely
independent of the body’s configuration in the ambient space, represents the mate-
rial structure of the body. The postulation of a material metric should be viewed as
similar in spirit to Noll’s postulation that a body is fully described by a constitutive
law. A metric does not reflect, like a constitutive law, a full stress-strain relation. It
only determines the reference with respect to which strain is measured.

Dislocations, disclinations and point defects are in a sense “elementary defects”
in which the defect-free structure is destroyed in clearly delineated regions (typi-
cally lines or points). This observation motivates the definition of elementary defects
in isotropic media. A body with singular defects is defined as a topological manifold
X and a closed subspace D, which we identify as the locus of the defect. Moreover,
M = X\D is endowed with a smooth structure and a Riemannian metric, such that
each point of M has a neighborhood that is defect-free in the above sense. Note that
this definition is in accordance with the concept of a defect proposed by Volterra
more than a century ago [26].

Our next step is to classify types of singular defects, and in particular, connect
this notion to the classical notions of dislocations, disclinations, and point defects.
Moreover, we address the question raised by Miri and Rivier [21] as to whether
dislocations and disclinations can co-exist.

In accordance with our definition of a singular defect, the differentiable mani-
fold that consists of the body minus the locus of the defect turns out to be an affine
manifold [3], that is, a differentiable manifold with local charts related to each other
by affine transformations. As defects have a topological nature, this affine manifold
often has a non-trivial topology. One of the basic tools for studying the topology
of a manifold is the fundamental group, with elements the homotopy classes of
closed loops. In our context, the homotopy class describes how a closed curve goes
around the locus of the defect. For affine manifolds there is a well-known map from
the fundamental group to affine transformations of the Euclidean space. This map,
which is a group homomorphism, is known as the monodromy [12].

As we shall show, the monodromy encompasses both the notions of disclination
and dislocation. The linear part of the affine transformation quantifies disclination,
whereas the translational part quantifies dislocation. While this seems to imply,
in response to the question raised by Miri and Rivier [21], that dislocations and
disclinations can co-exist, the actual answer is more subtle. The subtlety arises from
the necessity to choose a base point in defining the fundamental group. Let us focus
on a given homotopy class, and assume the fundamental group is abelian. Then,
taking into account the base-point dependence, the linear part of the monodromy
can be described by a tensor field and the translation part can be described by a
vector field. The tensor field describing the linear part is covariantly constant (that
is, its covariant derivative vanishes). Hence, the essential information is contained
in the tensor’s value at a single point, which is essentially the Frank vector, in the
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context of defects in ordered materials. In contrast, the vector field describing the
translation part of the monodromy is only covariantly constant if the linear part is
trivial. In the context of defects, this means that a dislocation can be quantified by
a Burgers vector, that is, by a quantity that depends on the properties of the defect
but not on the point of reference, only in the absence of disclinations.

The structure of this paper is as follows: in Section 2 we propose a definition for
bodies with singular defects, and show that they can be viewed as affine manifolds.
In Section 3 we describe the monodromy of an affine manifold as a map from its
fundamental group to affine transformations of its tangent space. In particular, we
relate the monodromy to disclinations and dislocations. In Section 4 we analyze
in this context the classical defects—disclinations, screw dislocations, edge dislo-
cations, higher-order defects, and point defects. For each example we perform an
explicit calculation of the monodromy. Furthermore, we prove a general result for
two-dimensional defects asserting that trivial monodromy implies a purely local
defect. Finally, our results are summarized and interpreted in Section 5.

2. Bodies with Singular Defects

2.1. Definitions

Our first step is to define what is a solid body with singular defects in a manner
that only relies on its metric, and does not depend on the presence of a lattice
structure, whether because there is no such structure or because it does not affect
the mechanical properties of the body. We start by defining a body free of defects.
We formulate everything in arbitrary dimension n; in most applications n = 3.

Definition 1. A defect-free body is a connected, oriented, n-dimensional Rie-
mannian manifold (M, g), possibly with boundary, that is globally flat, that is,
there exists an isometric embedding

f : M → R
n,

where R
n is equipped with the standard Euclidean metric, e; that is, g = f �e.

A few words about notations: let f : M → N be a differentiable mapping
between two manifolds. Then d f is a linear map T M → f ∗T N, where f ∗T N is
a vector bundle over M, with the fiber ( f ∗T N)p identified with the fiber T f (p)N.
Because of this canonical identification, if F → M is a vector bundle and Φ :
f ∗T N → F , then for p ∈ M and ξ ∈ T f (p)N, we can unambiguously apply Φ at
p to ξ , denoting the result by Φp(ξ).

Let α ∈ �(N; T ∗N) be a co-vector field on N. We denote by f ∗α ∈
�(M; f ∗T ∗N) its pullback defined by,

( f ∗α)p(v) = α f (p)(v), p ∈ M, v ∈ T f (p)N,

where we applied the above canonical identification on the left hand side. If we view
α as a differential form rather than a section, then its pullback, which is denoted by
f �α ∈ �(M; T ∗M), is defined by

( f �α)p(v) = α f (p)(d f p(v)), p ∈ M, v ∈ TpM,
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namely, f �α = ( f ∗α) ◦ d f . In this context, g = f �e is defined by

g(u, v) = ( f ∗e)(d f (u), d f (v)), u, v ∈ T M.

Having defined a defect-free body, we proceed to define a body with singular
defects.

Definition 2. A body with singular defects is a connected n-dimensional topolog-
ical manifold X and a (not-necessarily connected) closed subspace D ⊂ X (called
the locus of the defect), such that M = X\D is connected and oriented. Moreover,
M is endowed with a smooth structure and a (reference) metric g that is locally
Euclidean: every point p ∈ M has an open neighborhood (Up, g|Up ) that embeds
isometrically in (Rn, e). Finally, there do not exist a smooth structure and Rie-
mannian metric on X such that the inclusion M ↪→ X is an isometric embedding
of Riemannian manifolds.

The last condition in Definition 2 ensures the presence of a defect. In some cases,
there does exist a metric space structure on X such that the inclusion M ↪→ X is
an isometric embedding of metric spaces.

2.2. The Affine Structure

A body with singular defects carries a natural affine structure. Let {(Uα, ϕα :
Uα → R

n)} be an atlas of orientation-preserving isometries (which by Definition 2
exists), namely,

g|Uα = ϕ�αe.

Let (Uα, ϕα) and (Uβ, ϕβ) be two local charts with domains having a non-empty
intersection, V = Uα ∩ Uβ . Then,

g|V = ϕ�αe|V = ϕ�βe|V ,
which implies that

ϕβ ◦ ϕ−1
α : ϕα(V ) → ϕβ(V )

is an isometry between two open sets in R
n , namely a rigid transformation of the

form

A(x) = Lx + b,

where L ∈ SO(n) and b ∈ R
n (it is SO(n) rather than O(n) because we only con-

sider orientation-preserving isometries). A manifold endowed with an atlas such
that all coordinate transforms are affine is called an affine manifold. Bodies with
singular defects form a subclass of affine manifolds in which all local chart transfor-
mations are rigid transformations. Note that it is the only the smooth submanifold
M, and not the topological manifold X that carries an affine structure.
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Any affine structure comes with a natural connection ∇M that is induced from
the standard connection ∇e in the Euclidean space. Let (Uα, ϕα) be a local chart,
then for X,Y ∈ �(Uα; T Uα), we define

∇M
X Y = (ϕ�α∇e)X Y = dϕ−1

α

(
(ϕ∗
α∇e)X dϕα(Y )

)
.

Note that dϕα(Y ) ∈ �(Uα, ϕ∗
αT R

n), hence (ϕ∗
α∇e)X dϕα(Y ) ∈ �(Uα, ϕ∗

αT R
n), so

that the action of dϕ−1
α : ϕ∗

αT R
n → T M is well-defined.

To show that the definition of the pullback connection is independent of the
chosen chart, that is, coincides on overlapping charts, let ϕβ be another chart with
the same domain, and let ϕαβ = ϕα ◦ ϕ−1

β be the affine coordinate transformation.
Then

(ϕ�α∇e)X Y = (ϕ�βϕ
�
αβ∇e)X Y = ϕ�β∇e,

where in the last step we used the fact that ϕ�αβ∇e = ∇e, that is, affine transforma-
tions in Euclidean space preserve parallelism.

It follows from the definition of ∇M that for every local chart (Uα, ϕα),

∂αi = dϕ−1
α

(
ϕ∗
α

∂

∂xi

)

is a parallel vector field. To transport a vector in parallel within a given chart
(Uα, ϕα) we write v ∈ TpUα as

v = vi∂αi |p.

Denoting by Πq
p : TpUα → TqUα the parallel transport operator, we have

Π
q
p (v) = vi∂αi |q .

It is easy to see that the induced connection ∇M inherits the properties of the
Euclidean connection:

Proposition 1. ∇M is flat and torsion-free.

Proof. Let (U, ϕ) be a local chart and let X,Y ∈ �(U ; T U ). We have,

∇M
X Y − ∇M

Y X = ϕ−1∗
(
∇e
ϕ∗(X)ϕ∗(Y )− ∇e

ϕ∗(Y )ϕ∗(X)
)
,

where ϕ∗(X) is the vector field on ϕ(U ) corresponding to X.Because the Euclidean
connection is torsion free,

∇M
X Y − ∇M

Y X =
(
ϕ−1

)

∗ ([ϕ∗(X), ϕ∗(Y )]) = [X,Y ],
which proves that the torsion is zero. A similar argument shows that the curvature
is zero as well.

To summarize, every affine manifold is equipped with a natural flat and torsion-
free connection. For a locally Euclidean manifold, this connection is the Riemannian
Levi–Civita connection.
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3. Monodromy

The flatness of the connection on M implies that parallel transport in T M is
path-independent within every homotopy class. If the defective body is simply-
connected (as is the case, for example, for point defects in three dimensions), then
parallel transport is totally path-independent. Otherwise, parallel transport depends
on the homotopy class of the curve. In this case it is useful to analyze the affine
manifold through its universal cover.

3.1. The Universal Cover

Let p ∈ M; we denote as usual by π1(M, p) the fundamental group of M at
p. Every g ∈ π1(M, p) is a homotopy class of curves γ : I → M, satisfying
γ (0) = γ (1) = p. π1(M, p) is a group with respect to curve concatenation (gh is
the homotopy class [η ∗ γ ], where γ ∈ g and η ∈ h). Although the fundamental
group depends on the reference point, π1(M, p) and π1(M, q) are isomorphic.
However, there is no canonical isomorphism unless the fundamental group is abelian
(see below).

We next introduce the notion of a universal cover; see for example, Hatcher
[13] for a thorough presentation of the algebraic-topological constructs used in this
section.

Definition 3. A manifold M̃ along with a map π : M̃ → M is a covering space
for M, if for every p ∈ M there exists an open neighborhood Up ⊂ M, such that
π−1(Up) is a union of disjoint sets, each homeomorphic to Up. The map π is called
a projection, and the set π−1(p) is called the fiber of M̃ over p. A universal cover
of M is a simply-connected covering space.

It is a known fact that a universal cover exists if M is connected, path-connected,
and semi-locally simply-connected, all of which we will assume. Moreover, the
universal cover is unique up to isomorphism. The universal cover can be constructed
explicitly from the fundamental groupoid of all homotopy classes of curves in M.

The universal cover M̃ inherits the flat torsion-free connection of M, ∇M̃ =
π�∇M, namely,

∇M̃
X Y = dπ−1

(
(π∗∇M)X dπ(Y )

)
X,Y ∈ �(T M̃). (1)

Since M̃ is simply-connected and ∇M̃ is flat and torsion-free, it follows that parallel
transport in T M̃ is path-independent. For p, q ∈ M̃, we denote by Π̃q

p : TpM̃ →
TqM̃ the parallel transport operator from p to q. For γ : I → M, let Πγ :
Tγ (0)M → Tγ (1)M denote parallel transport along γ. Note that

Π̃
q
p = dπ−1

q ◦Πγ ◦ dπp, (2)

where γ is the projection of a curve that connects p to q. An important property of
covering spaces is the existence of a unique lift of curves (see Proposition 1.34 in
[13]). Let γ : I → M with γ (0) = p. For every p̃ ∈ π−1(p) there exists a unique
curve γ̃ : I → M̃ satisfying π ◦ γ̃ = γ (that is, γ̃ is a lift of γ ) and γ̃ (0) = p̃.
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3.2. Deck Transformations

Covering spaces come with automorphisms called deck transformations, which
are homeomorphisms f : M̃ → M̃ satisfying

π ◦ f = π. (3)

That is, a deck transformation maps continuously every point in the covering space
to a point that lies on the same fiber. It is easy to see that deck transformations form
a group under composition, which we denote by deck(M̃).

There exists a close connection between deck(M̃) andπ1(M), which we present
in the following propositions. The proofs, which are all classical, are given in order
to demonstrate how the structure of a manifold is revealed through its universal
cover.

Proposition 2. A deck transformation of a path connected covering space is
uniquely determined by its value at a single point.

Proof. Let ϕ1, ϕ2 ∈ deck(M̃) satisfy

ϕ1(p) = ϕ2(p) = p̃.

Suppose that there exists a point q ∈ M̃ for which

q1 = ϕ1(q) 	= ϕ2(q) = q2.

Let α : I → M̃ be a curve that connects q with p and let β : I → M̃ be a curve
that connects p with p̃. The curves

γ1 = (ϕ1 ◦ α−1) ∗ β ∗ α
γ2 = (ϕ2 ◦ α−1) ∗ β ∗ α,

connect q to q1 and q2 respectively. However,

π ◦ γ1 = (π ◦ α−1) ∗ (π ◦ β) ∗ (π ◦ α) = π ◦ γ2,

and γ1(0) = γ2(0) = q, thus violating the unique lift property. This uniqueness
proof shows in fact how to construct the deck transformation given its value at a
single point (Fig. 1).

Proposition 3. Let M̃ be the universal cover of M.Given a reference point p ∈ M̃,
there exists a canonical isomorphism between deck(M̃) and π1(M, π(p)). If the
fundamental group is abelian, then this isomorphism is independent of the reference
point.
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Fig. 1. Construction of a deck transformation given that p is mapped into p̃

Fig. 2. The relation between π1(M) and deck(M̃). Fix a point p ∈ M̃. Given a loop γ in
M based at π(p), the corresponding deck transformation ϕ is the unique one such that ϕ(p)
is the endpoint of the lift of γ starting at p. By Proposition 2, deck transformations are fully
specified by their value at a single point

Proof. Given a reference point p, to every ϕ ∈ deck(M̃) corresponds an element
g ∈ π1(M, π(p)) by taking a loop in M that is the projection of a curve in M̃ that
connects p to ϕ(p). It is easy to see that this mapping is well defined and does not
depend on the chosen curve. Conversely, to every g ∈ π1(M, π(p)) corresponds
a deck transformation, by mapping p to the end point of the unique lift of a curve
γ : I → M that represents g (see Fig. 2). It is easy to see that this mapping
between deck transformations and the fundamental group is both bijective and
preserves the group structure, that is, it is an isomorphism, which we denote by
Φ(·, p) : deck(M̃) → π1(M, p).

Let p′ be another point on the same fiber as p. Let γ be a curve that connects
p to p′ and let β be a curve that connects p to ϕ(p). Then,

Φ(ϕ, p′) =
[
π ◦

(
(ϕ ◦ γ ) ∗ β ∗ γ−1

)]
= [π ◦ ϕ ◦ γ ] · [π ◦ β] · [π ◦ γ−1].
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Note that

[π ◦ β] = Φ(ϕ, p), [π ◦ ϕ ◦ γ ] = [π ◦ γ ] and [π ◦ γ−1] = [π ◦ γ ]−1.

Hence

Φ(ϕ, p′) = [π ◦ γ ] ·Φ(ϕ, p) · [π ◦ γ ]−1,

and the mappingΦ(ϕ, p) is independent of p if and only if the fundamental group
is abelian.

Deck transformations leave the connection invariant:

Proposition 4. Let ϕ ∈ deck(M̃). Then,

ϕ�∇M̃ = ∇M̃.

Proof. Note that both ∇M̃ and ϕ�∇M̃ are connections on T M̃. Now,

ϕ�∇M̃ = ϕ�π�∇M = π�∇M = ∇M̃,

where the identity ϕ�π� = π� follows from the identity π ◦ ϕ = π .

A consequence of this invariance is that the differential of any deck transfor-
mation is a parallel section.

Proposition 5. Let ϕ ∈ deck(M̃). Then,

dϕ ∈ �(M̃; T ∗M̃ ⊗ ϕ∗T M̃)

is a parallel section.

Proof. Let f : M̃ → N, letΦ ∈ �(M̃; T ∗M̃⊗ f ∗T N), and let X, v ∈ �(M̃; T M̃).

Denote by ∇̂ the connection on T ∗M̃ ⊗ f ∗T N induced by the connections ∇M̃

and f ∗∇N. By definition,

( f ∗∇N)XΦ(v) = (∇̂XΦ)(v)+Φ(∇M̃
X v).

In the present case we take N = M̃, f = ϕ, and Φ = dϕ. Hence,

(∇̂X dϕ)(v) = dϕ(∇M̃
X v)− (ϕ∗∇M̃)X dϕ(v) = dϕ

(
∇M̃

X v − (ϕ�∇M̃)Xv
)

= 0,

where in the last step we used Proposition 4.
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3.3. The Monodromy of an Affine Manifold

The usefulness of the universal cover M̃ with its geometric properties pulled
back from M stems from the fact that on one hand it has patches that are a “genuine
replica” of M, while on the other hand, parallel transport on its tangent space is
path-independent. The ability to transport vectors allows an unambiguous definition
of a “displacement vector” with respect to a reference point, which is known as a
developing map.

Definition 4. Fix p ∈ M̃. The developing map,

dev : M̃ → TpM̃

is defined as follows: for every q ∈ M̃ choose a curve γ : I → M̃ that connects p
with q. Then,

dev(q) =
∫ 1

0
Π̃

p
γ (t)(γ̇ (t)) dt.

Since ∇M̃ is torsion free, this definition is independent of the chosen curve.
This can be shown as follows: Define a differential 1-formω on M̃ with coefficients
in TpM̃ by parallel transport, namely,

ωq = Π̃
p

q .

The developing map is then given by

dev(q) =
∫

γ

ω, (4)

where γ : I → M̃ connects p with q. Cartan’s first structural equation implies that
dω = 0. Since M̃ is simply-connected, the integral is path independent by Stokes’
theorem.

The developing map is the geometric equivalent of the crystallographic practice
of counting discrete steps (it is in fact equivalent to the developing map defined by
Ozakin and Yavari [23]). Note that the common practice is to define the developing
map into R

n using a trivialization of the tangent bundle; we have reasons that will
become apparent below to associate the developing map with a particular tangent
space.

Note that both M̃ and TpM̃ are affine manifolds. It follows from (4) that the
developing map preserves the affine structure in the following sense:

Proposition 6.

d devq(v) = Π̃
p

q (v),

where on the right hand side we use the canonical identification of Tdev(q)TpM̃

with TpM̃.
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Fig. 3. The curve α = (ϕ ◦ γ ) ∗ β (in red) used to calculate dev(ϕ(q)) (color figure online)

The developing map is a useful tool for analyzing curves in M that surround
defects, by studying how the developing map changes along their lift in M̃. Fix a
deck transformation ϕ. Given q ∈ M̃, we express dev(ϕ(q)) by integrating along
a curve that connects p and ϕ(q) that is a concatenation of the form

α = (ϕ ◦ γ ) ∗ β,
where γ is a curve the connects p and q, and β connects p with ϕ(p) (see Fig. 3).

By definition,

dev(ϕ(q)) =
∫
Π̃

p
α(t)(α̇(t)) dt

=
∫
Π̃

p
β(t)(β̇(t)) dt +

∫
Π̃

p
ϕ(γ (t)) ◦ dϕγ (t)(γ̇ (t)) dt

= dev(ϕ(p))+ Π̃
p
ϕ(p)

∫
Π̃
ϕ(p)
ϕ(γ (t)) ◦ dϕγ (t)(γ̇ (t)) dt, (5)

where in the passage from the second to the third line we used the composition rule
for parallel transport, Π̃ p

ϕ(γ (t)) = Π̃
p
ϕ(p) ◦ Π̃ϕ(p)

ϕ(γ (t)). Note that the first term on the
right hand side is independent of q; it only depends on ϕ and on the reference point
p.

To further simplify the second term on the right hand side we need the following
lemma:

Lemma 1. For every q ∈ M̃,

Π̃
ϕ(p)
ϕ(q) ◦ dϕq = dϕp ◦ Π̃ p

q . (6)

Proof. Let γ : I → M̃ be a curve that connects q with p. Then, the curve
ϕ ◦ γ : I → M̃ connects ϕ(q) with ϕ(p). Let ξ(t) be a parallel vector field along
γ (t) and let η(t) be a parallel vector field along ϕ ◦ γ , satisfying

η(0) = dϕq(ξ(0)) (7)

(see Fig. 4). We show below that

η(t) = dϕγ (t)(ξ(t)). (8)
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Fig. 4. Construction for the proof of Lemma 1

Since η(t) is a parallel vector field,

η(1) = Π̃
ϕ(p)
ϕ(q) η(0) = Π̃

ϕ(p)
ϕ(q) ◦ dϕq(ξ(0)).

On the other hand, by (8) and since ξ(t) is a parallel vector field,

η(1) = dϕγ (1)(ξ(1)) = dϕp ◦ Π̃ p
q (ξ(0)).

Since this holds for arbitrary ξ(0) we obtain the desired result.
It remains to prove (8). Note that dϕγ (t)(ξ(t)) is a vector field along ϕ ◦ γ that

satisfies the initial conditions (7). To show that it is equal to η(t) it only remains to
show that it is parallel, which follows from the fact that both dϕ (by Proposition 5)
and ξ(t) are parallel sections.

For a vector space V , let Aff(V ) denote the space of affine transformations of
V .

Theorem 1. There exists mϕ ∈ Aff(TpM̃) such that

dev(ϕ(q)) = mϕ(dev(q))

for all q ∈ M̃. Explicitly, mϕ is given by

mϕ(v) = Aϕ v + bϕ,

with Aϕ ∈ End(TpM̃) given by

Aϕ = Π̃
p
ϕ(p) ◦ dϕp, (9)

and bϕ ∈ TpM̃ given by

bϕ = dev(ϕ(p)). (10)

Proof. By (5),

dev(ϕ(q)) = dev(ϕ(p))+ Π̃
p
ϕ(p)

∫
Π̃
ϕ(p)
ϕ(γ (t)) ◦ dϕγ (t)(γ̇ (t)) dt.

By (6) with q = γ (t),

Π̃
ϕ(p)
ϕ(γ (t)) ◦ dϕγ (t) = dϕp ◦ Π̃ p

γ (t),
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hence

dev(ϕ(q)) = dev(ϕ(p))+ Π̃
p
ϕ(p) ◦ dϕp

∫
Π̃

p
γ (t)(γ̇ (t)) dt

= bϕ + Aϕ dev(q).

Let

m : deck(M̃) −→ Aff(TpM̃)

be given by ϕ �→ mϕ.As shown next, this mapping is a group homomorphism, and
it is called the monodromy of the affine manifold M.

Proposition 7. m is a group homomorphism, namely,

mϕ◦ψ = mϕ ◦ mψ.

Proof. By definition,

Aϕ◦ψ = Π̃
p
ϕ◦ψ(p) ◦ dϕψ(p) ◦ dψp = Π̃

p
ϕ(p) ◦ Π̃ϕ(p)

ϕ◦ψ(p) ◦ dϕψ(p) ◦ dψp.

Once again we use (6) to obtain

Π̃
ϕ(p)
ϕ◦ψ(p) ◦ dϕψ(p) = dϕp ◦ Π̃ p

ψ(p).

Hence,

Aϕ◦ψ = Π̃
p
ϕ(p) ◦ dϕp ◦ Π̃ p

ψ(p) ◦ dψp = Aϕ ◦ Aψ.

Finally, using the fact that dev ◦ϕ = Aϕ ◦ dev +bϕ and dev(ψ(p)) = bψ ,

bϕ◦ψ = dev(ϕ ◦ ψ(p))
= Aϕ dev(ψ(p))+ dev(ϕ(p))

= Aϕbψ + bϕ.

Thus,

mϕ◦ψ(v) = Aϕ◦ψv + bϕ◦ψ = Aϕ Aψv + Aϕbψ + bϕ = mϕ ◦ mψ(v).

Having explicit expressions for the affine transformations mϕ , we turn to study
their properties. In particular, we allow the reference point to vary and view the
developing map as a function

dev : M̃ × M̃ → T M̃,

such that �(dev(p, q)) = p, where � : T M̃ → M̃ is the canonical projection.
From this angle, we may view m as a homomorphism from the group of deck
transformations to the group of sections of the principal bundle Aff(T M̃). The
next proposition states that Aϕ is determined by its value at a single point.

Proposition 8. Aϕ is a parallel section of End(T M̃).
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Proof. Define Π̃ϕ ∈ �(M̃;ϕ∗T M̃ ⊗ T M̃) by

(Π̃ϕ)p = Π̃
p
ϕ(p).

Then

Aϕ = Π̃ϕ ◦ dϕ,

which is a parallel section of End(T M̃). Indeed, both dϕ and Π̃ϕ are parallel
sections, the first by Proposition 5 and the second because the parallel transport is
path independent.

The analogous statement for bϕ is more subtle.

Proposition 9. bϕ is a parallel vector field if and only if Aϕ is the identity section
of End(T M̃).

Proof. By definition,

(bϕ)p =
∫
Π̃

p
βϕ,p(t)

(β̇ϕ,p(t)) dt.

where βϕ,p is a curve that connects p to ϕ(p). For q ∈ M̃ set

βϕ,q = (ϕ ◦ γ−1) ∗ βϕ,p ∗ γ,
where γ is a curve from q to p. Then,

(bϕ)q = Π̃
q
p (bϕ)p −

∫
Π̃

q
ϕ◦γ (t) ◦ dϕγ (t)(γ̇ (t)) dt +

∫
Π̃

q
γ (t)(γ̇ (t)) dt

= Π̃
q
p (bϕ)p −

∫
Π̃

q
γ (t) ◦ Π̃γ (t)

ϕ◦γ (t) ◦ dϕγ (t)(γ̇ (t)) dt +
∫
Π̃

q
γ (t)(γ̇ (t)) dt

= Π̃
q
p (bϕ)p +

∫
Π̃

q
γ (t)

(
Id − (Aϕ)γ (t)

)
(γ̇ (t)) dt.

If Aϕ = Id, then

(bϕ)q = Π̃
q
p (bϕ)p.

To show that this condition is also necessary, consider the vector field (bϕ)α(t) along
a curve α. Then

D

dt
(bϕ)α(t) = (Id − (Aϕ)α(t))(α̇(t)).

If at some point along the curve (Aϕ)α(t) 	= Id, then the vector field is not parallel.

The existence of the monodromy and its properties considered so far only
depend on the affine structure of M, and not on its metric properties. The last two
properties are of metric nature.

Proposition 10. Aϕ ∈ O(T M̃).
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Proof. Since Aϕ = Π̃ϕ ◦ dϕ, and both sections are norm preserving, their compo-
sition is a norm preserving endomorphism.

Proposition 11. For a fixed reference point, the developing map dev : M̃ → TpM̃

is a local isometry.

Proof. This is an immediate consequence of Proposition 6 and the fact that parallel
transport is compatible with the metric.

3.4. The Abelian Case: Monodromy as Sections Over M

The universal cover M̃ is a useful mathematical construct to study the geometry
of the locally-Euclidean manifold M, but from the point of view of material science,
one would like to study defects with geometric constructs that are defined on M

rather than M̃. In particular, one would like to make geometric measurements along
curves in M rather than along curves in M̃.

The monodromy is a homomorphism m : deck(M̃) → �(M̃,Aff(T M̃)).
Although deck transformations can be related to π1(M), this relation depends on
the choice of a reference point in M̃. Hence, in the general case, monodromy
cannot be associated with loops in M. The exception is when π1(M) is abelian,
in which case to every element g ∈ π1(M) corresponds a deck transformation,
which we denote by ϕg . Hence, we consider the monodromy as a homomorphism
m : π1(M) → �(M̃,Aff(T M̃)), and for g ∈ π1(M) we write mg(v) = Agv+ bg .
Note that we haven’t yet gotten rid of the covering space as the range of m is sec-
tions of the principal bundle Aff(T M̃). However, as will be shown below, Ag can
always be identified with a section of End(T M), whereas bg can under specific
conditions be identified with a vector field in M.

Before we proceed, we note that the abelian case is quite generic in the follow-
ing sense: in addition to being directly applicable to both disclinations and screw
dislocations, it is also applicable to more complicated defects if one restricts oneself
to loops that surround all the defect loci. In a sense, the study of abelian groups
is non-restrictive as long as we focus on isolated defects with loops that surround
them. In more complex topologies (for example, distributed defects), a complete
characterization of the monodromy must be performed on the covering space.

Theorem 2. Suppose that π1(M) is abelian. To every g ∈ π1(M) corresponds a
section AM

g ∈ �(M; End(T M)) such that Ag = π�AM
g , namely,

Ag = dπ−1 ◦ (π∗ AM
g ) ◦ dπ.

Moreover, (AM
g )p is the parallel transport operator along any loop γ representing

g based at p.

Proof. This is an immediate consequence of parallel transport in T M̃ being the
pullback underπ of parallel transport in T M. Denote by ϕg the deck transformation
that corresponds to g. Such a deck transformation is uniquely determined without
reference to basepoint because of the hypothesis that π1(M) is abelian. Let

Π̃g : ϕ∗
g T M̃ → T M̃
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be given by parallel transport. Then,

Ag = Π̃g ◦ dϕg.

Since π is a local diffeomorphism, we may write

Ag = dπ−1 ◦
(

dπ ◦ Π̃g ◦ dϕg ◦ dπ−1
)

◦ dπ

= dπ−1 ◦
(

dπ ◦ Π̃g ◦ ϕ∗
g(dπ

−1)
)

◦ dπ,

where the last transition follows from Equation (3). It follows from Equation (2)
that the expression in parentheses is a section of End(π∗T M) pulled back from a
section of End(T M). Namely, evaluated at the point p ∈ M, it is the pull-back of
the parallel transport operator along the loop γ = π ◦ β, where β is a curve that
connects ϕ(q) to q with q ∈ π−1(p). The choice of q is irrelevant because of the
abelian hypothesis.

Theorem 3. Suppose that π1(M) is abelian. Then,

bg = dπ−1
(
π∗bM

g

)
,

where bM
g ∈ �(M; T M) is given by

(
bM

g

)

p
=

∫
Π

p
γ,γ (t)(γ̇ (t)) dt,

with [γ ] = g.

Proof. Let α be a curve in M̃ that connects p and ϕg(p), and let γ = π ◦ α. Then

bg =
∫
Π̃

p
α(t)(α̇(t)) dt

= dπ−1
∫

dπ ◦ Π̃ p
α(t) ◦ dπ−1 ◦ dπ(α̇(t)) dt

= dπ−1
∫

dπ ◦ Π̃ p
α(t) ◦ dπ−1(γ̇ (t)) dt

= dπ−1π∗
∫
Π
π(p)
γ,γ (t)(γ̇ (t)) dt,

where in the last passage we used (2).

4. Examples

In this section we examine a number of classical defects using the formalism
developed in the previous section.
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Fig. 5. a Sketch of a positive disclination following Volterra’s cut-and-weld procedure. b
Positive disclination in a hexagonal lattice; one site has 5 neighbors and its center is a source
of positive Gaussian curvature. c Negative disclination in a hexagonal lattice; one site has 7
neighbors and its center is a source of negative Gaussian curvature

4.1. Disclinations

Disclinations, and more precisely wedge-disclinations are two-dimensional line
defects, that is, the locus of the defect is a straight line, and the intrinsic geometry
of the body is axially symmetric. Isolated disclinations are not common in crystals
due to their high energetic cost, but are more common in quasi-two-dimensional
systems, such as monolayers of liquid crystals.

Wedge disclinations as topological defects were first introduced by Volterra
[26] using the cut-and-weld procedure; see Fig. 5a. There are two types of wedge
disclinations: positive disclinations, in which a cylindrical wedge is removed and
the faces of the cut are welded, and negative disclinations, in which a cylindrical
wedge is inserted after a half-plane has been cut (disclinations are often called
wedge defects). The sign of the disclination is dictated by the sign of the Gaussian
curvature at its locus. In crystals, disclinations are also characterized by either a
missing wedge or an extra wedge, in which case the disclination angle is determined
by the structure of the unperturbed lattice; see Fig. 5b, c.

Adopting the terminology of the present paper, disclinations are singular
defects, in which the body M is hemeomorphic to the three-dimensional Euclidean
space with a line removed. The fundamental group is isomorphic to the additive
group π1(M) ∼= Z, where an integer k ∈ Z corresponds to a loop that surrounds the
disclination line k times; the sign of k determines the handedness of the loops. In
particular, the fundamental group is abelian so that the results of Section 3.4 apply
(Fig. 6).

We parametrize M using cylindrical coordinates (R, Φ, Z), with R > 0, and
identifying Φ = 0 and Φ = 2π . The metric on M can be defined in several
equivalent ways:

1. Local charts The first way is to construct local charts {(Uβ, ϕβ)} and take the
metric on M to be the metric defined by the pullbacks g|Uβ = ϕ�βe. Let {Φβ}
be a collection of angles. We define local charts

(xβ, yβ, zβ) = ϕβ(R, Φ, Z),
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Fig. 6. The universal cover of the manifold that models a disclination

where

xβ = R cosα(Φ −Φβ) yβ = R sin α(Φ −Φβ) and zβ = Z ,

(11)

where α > 0 (α > 1 for negative disclinations and 0 < α < 1 for positive
disclinations). The range ofΦ has to be smaller than both 2π and 2π/α. It can
be checked explicitly that all the transition maps ϕβ ◦ ϕ−1

γ are rigid rotations.
2. Orthonormal frame field A second way to define a metric on M is, following

[31], to introduce a frame field,

e1 = ∂R e2 = 1

αR
∂Φ e3 = ∂Z ,

with dual co-frame,

ϑ1 = dR ϑ2 = αR dΦ ϑ3 = dZ ,

and set the metric to be that with respect to which this frame field is orthonor-
mal, namely,

g = dR ⊗ dR + α2 R2 dΦ ⊗ dΦ + dZ ⊗ dZ .

To show that (M, g) is indeed locally Euclidean we calculate the Riemann
curvature tensor using Cartan’s formalism. We first calculate the Levi–Civita
connection using Cartan’s first structural equations. Introducing an anti-
symmetric matrix of connection 2-forms ωαβ that satisfies the relation

∇X eα = ωβα(X) eβ.
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Cartan’s first structural equations are

dϑα + ωαβ ∧ ϑβ = 0.

It is easy to check that the only non-zero connection form is

ω1
2 = − 1

R
ϑ2 = −α dΦ.

Note that the fact that the connection form does not vanish implies that the
chosen frame field is not parallel with respect to the Riemannian connection.
The curvature form is obtained from Cartan’s second structural equations,

Ωα
β = −dωαβ − ωαγ ∧ ωγ β.

An explicit substitution shows that the right hand side vanishes, that is, this
Riemannian manifold is locally flat.

3. Conformal representation A third way of defining a metric onMuses the two-
dimensional character of disclinations, and the fact that every two-dimensional
metric is locally conformal to the Euclidean metric. We adopt a parametrization

M = {(X,Y, Z) ∈ R
3 : X2 + Y 2 	= 0},

that is, the Z -axis is locus of the disclination. The metric is assumed to be of
the following form

g = e2�(X,Y )(dX ⊗ dX + dY ⊗ dY )+ dZ ⊗ dZ ,

where �(X,Y ) is the conformal factor. Liouville’s equation states that this
metric is locally flat if and only if the Laplacian of � vanishes, which implies
that flat metrics of this form can be generated by taking � to be any harmonic
function. A disclination has cylindrical symmetry, and corresponds to

� = β log(X2 + Y 2), (12)

whereβ is the magnitude of the disclination;β > 0 corresponds to the insertion
of a wedge, whereasβ < 0 corresponds to the removal of a wedge. The relation
between the parameter β and the parameter α used above is β = α − 1.

We proceed to obtain an explicit expression for parallel transport in T M. We
may use any of the parametrizations introduced above.

1. Local charts Take a chart (U, ϕ) of the form (11), with, say, Φβ = 0. Then,
⎛

⎝
∂R

∂Φ
∂Z

⎞

⎠

(R,Φ,Z)

=
⎛

⎝
cosαΦ sin αΦ 0

−αR sin αΦ αR cosαΦ 0
0 0 1

⎞

⎠

⎛

⎝
∂x

∂y

∂z

⎞

⎠

(R,Φ,Z)

,

and inversely,
⎛

⎝
∂x

∂y

∂z

⎞

⎠

(R,Φ,Z)

=
⎛

⎝
cosαΦ − 1

αR sin αΦ 0
sin αΦ 1

αR cosαΦ 0
0 0 1

⎞

⎠

⎛

⎝
∂R

∂Φ
∂Z

⎞

⎠

(R,Φ,Z)

.
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The connection on T M is the pullback of the Euclidean connection, hence
(∂x , ∂y, ∂z) is a parallel frame in T U . That is, for p0 = (R0, Φ0, Z) and
p = (R, Φ, Z),

Π
p0
p

⎛

⎝
∂x

∂y

∂z

⎞

⎠

p

=
⎛

⎝
∂x

∂y

∂z

⎞

⎠

p0

.

Thus, for v ∈ TpU of the form

v = vR ∂R |p + vΦ ∂Φ |p + vZ ∂Z |p,

we have,

Π
p0
p (v) = (

vR vΦ vZ
)
⎛

⎝
cosα(Φ −Φ0)

1
αR0

sin α(Φ −Φ0) 0
−αR sin α(Φ −Φ0)

R
R0

cosα(Φ −Φ0) 0
0 0 1

⎞

⎠

⎛

⎝
∂R

∂Φ
∂Z

⎞

⎠

p0

.

2. Conformal representation Since parallel transport along the Z axis is trivial,
we focus on the parallel transport of vectors within the XY -plane. For that we
construct a (local) parallel orthonormal frame. Let θ(X,Y ) be a function to be
determined. Any frame field of the form

e1 = e−� (cos θ ∂X − sin θ ∂Y ) ,

e2 = e−� (sin θ ∂X + cos θ ∂Y ) ,
(13)

is orthonormal. The dual co-frame field is

ϑ1 = e� (cos θ dX − sin θ dY ) ,

ϑ2 = e� (sin θ dX + cos θ dY ) .

The condition for the frame field (e1, e2) to be parallel is that dϑ1 = dϑ2 = 0.
It is easy to check that this is satisfied if �(X,Y ) and θ(X,Y ) satisfy the
Cauchy–Riemann equations,

∂θ

∂X
= − ∂�

∂Y
and

∂θ

∂Y
= ∂�

∂X
. (14)

For � given by (12),

θ(X,Y ) = 2β tan−1
(

Y

X

)
,

which has a branch cut that can be chosen to be along the negative X -axis.
Thus, to parallel transport a vector v ∈ TpM to another point on the same
plane, we first represent it with respect to the basis {e1, e2}. Since this is a
parallel frame, the components of the transported vector remain invariant. We
will use this approach when we consider edge dislocations.
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We proceed to construct the universal cover M̃ of M in order to put into action
the formalism derived in the previous section. Since M is homotopy equivalent
to a circle, with universal cover a line, the universal cover of M is homotopically
equivalent to the line. A natural parametrization for M̃ is

(R,Θ, Z) ∈ (0,∞)× R × R,

where the projection map π : M̃ → M is

π(R,Θ, Z) = (R,Θ mod 2π, Z).

The lift of a loop γk ∈ π1(M, p), p = (R, Φ, Z) that surrounds the disclination
line k times and starts at (R, Φ + 2π�, Z) ends at (R, Φ + 2π(� + k), Z). Thus,
for k ∈ Z, the corresponding deck transformation is

ϕk(R,Θ, Z) = (R,Θ + 2πk, Z)

(the existence of a natural isomorphism from π1(M) to deck(M̃) is due to the
former being abelian).

Parallel transport in T M̃ is induced by parallel transport in T M. Let p =
(R,Θ, Z) and p0 = (R0,Θ0, Z0). For a tangent vector v ∈ TpM̃ of the form

v = vR ∂R |p + vΘ ∂Θ |p + vZ ∂Z |p,

we have

Π̃
p0
p (v) = (

vR vΘ vZ
)
⎛

⎝
cos(α(Θ −Θ0))

1
αR0

sin(α(Θ −Θ0)) 0
−αR sin(α(Θ −Θ0))

R
R0

cos(α(Θ −Θ0)) 0
0 0 1

⎞

⎠

⎛

⎝
∂R

∂Θ
∂Z

⎞

⎠

p0

.

With this we proceed to calculate the developing map, dev : M̃ → TpM̃, for
p = (R0,Θ0, Z0). Let γ (t) = (R(t),Θ(t), Z(t)) be a curve based at p. Then,

Π̃
p
γ (t)(γ̇ (t)) = (

Ṙ Θ̇ Ż
)
⎛

⎝
cos(αΘ) sin(αΘ) 0

−αR sin(αΘ) αR cos(αΘ) 0
0 0 1

⎞

⎠

⎛

⎝
∂x

∂y

∂z

⎞

⎠

p

= d

dt

(
R cos(αΘ) R sin(αΘ) Z

)
⎛

⎝
∂x

∂y

∂z

⎞

⎠

p

.

This is easily integrated, yielding

dev(R,Θ, Z) = [R cos(αΘ)− R0 cos(αΘ0)] ∂x |p

+ [R sin(αΘ)− R0 sin(αΘ0)] ∂y |p

+ (Z − Z0) ∂z |p.

We henceforth represent the developing map as a column vector with entries the
components of the parallel frame (∂x , ∂y, ∂z),

dev(R,Θ, Z) =
⎛

⎝
R cos(αΘ)− R0 cos(αΘ0)

R sin(αΘ)− R0 sin(αΘ0)

Z − Z0

⎞

⎠ .
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From this we easily calculate the monodromy. Let k ∈ Z. Then for q =
(R,Θ, Z),

dev(ϕk(q)) = dev(R,Θ + 2πk, Z) = Ak dev(q)+ bk,

where

Ak =
⎛

⎝
cos 2παk − sin 2παk 0
sin 2παk cos 2παk 0

0 0 1

⎞

⎠ ,

and

bk = (Ak − I )

⎛

⎝
R0 cos(αΘ0)

R0 sin(αΘ0)

0

⎞

⎠ .

As expected, the linear part Ak of the monodromy is a parallel section of End(T M̃)

(its representation in a parallel frame does not depend on the coordinates). It is a
rotation by an angle 2παk about the Z -axis. Unless Ak − I = 0 the translation part
bk is not a parallel vector field.

4.2. Screw Dislocations

Screw dislocations are also line defects, and like disclinations, their intrinsic
geometry is axially symmetric. Like disclinations, screw dislocations were first
introduced by Volterra (albeit the term was only coined later). The Volterra proce-
dure for creating a screw dislocation is to cut a half-plane in the body and weld it
with a fixed offset parallel to the half-plane’s boundary; see Fig. 7a. A visualization
of a screw dislocation in a lattice is shown in Fig. 7b.

The topology of a body with a screw dislocation is identical to that of a body
with a disclination; it is only the metric that differs. We parametrize M using the
same cylindrical coordinates (R, Φ, Z) as for disclinations.

Once again, there are several alternatives for prescribing the metric on M:

Fig. 7. a Sketch of a screw dislocation following Volterra’s cut-and-weld procedure. b Screw
dislocation in a lattice structure
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1. Local charts Let

x = R cos(Φ−Φβ) y = R sin(Φ−Φβ) and z = Z − h(Φ−Φβ),
where h is a fixed offset (the dislocation shift), Φβ is a fixed angle, and Φ ∈
(0, 2π). The metric on M is then the pullback metric.

2. Orthonormal frame field Following [29], we define an orthonormal frame
field,

e1 = ∂R e2 = 1

R
∂Φ + h

R
∂Z e3 = ∂Z .

The dual co-frame is

ϑ1 = dR ϑ2 = R dΦ ϑ3 = dZ − h dΦ.

The metric with respect to which this frame field is orthonormal is:

g = dR ⊗ dR+(R2 + h2) dΦ ⊗ dΦ+dZ ⊗ dZ−h (dΦ ⊗ dZ + dZ ⊗ dΦ).

To show that (M, g) is locally Euclidean we use again Cartan’s formalism.
The only non-zero connection form is

ω1
2 = −dΦ,

so Ωα
β = 0.

To obtain an explicit formula for the parallel transport of vectors, we follow a
procedure similar to that for disclinations. For p = (R, Φ, Z),

⎛

⎝
∂R

∂Φ
∂Z

⎞

⎠

p

=
⎛

⎝
cosΦ sinΦ 0

−R sinΦ R cosΦ −h
0 0 1

⎞

⎠

⎛

⎝
∂x

∂y

∂z

⎞

⎠

p

,

and conversely,
⎛

⎝
∂x

∂y

∂z

⎞

⎠

p

=
⎛

⎝
cosΦ − 1

R sinΦ − h
R sinΦ

sinΦ 1
R cosΦ h

R cosΦ
0 0 1

⎞

⎠

⎛

⎝
∂R

∂Φ
∂Z

⎞

⎠

p

.

Since (∂x , ∂y, ∂z) is a parallel frame, it follows that for v ∈ TpU , of the form

v = vR ∂R |p + vΦ ∂Φ |p + vZ ∂Z |p,

we have

Π
p0
p (v) = (

vR vΦ vZ
)
⎛

⎜
⎝

cos(Φ −Φ0)
1

R0
sin(Φ −Φ0)

h
R0

sin(Φ −Φ0)

−R sin(Φ −Φ0)
R
R0

cos(Φ −Φ0) −h + h R
R0

cos(Φ −Φ0)

0 0 1

⎞

⎟
⎠

⎛

⎝
∂R

∂Φ
∂Z

⎞

⎠

p0

.

The universal cover of M is constructed identically to disclinations, taking the
open half-space, along with the projection

π(R,Θ, Z) = (R,Θ mod 2π, Z).
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For p = (R,Θ, Z), p0 = (R0,Θ0, Z0), and a tangent vector v ∈ TpM̃ of the form

v = vR ∂R |p + vΘ ∂Θ |p + vZ ∂Z |p,

we have,

Π̃
p0
p (v) = (

vR vΘ vZ
)
⎛

⎜
⎝

cos(Θ −Θ0)
1

R0
sin(Θ −Θ0)

h
R0

sin(Θ −Θ0)

−R sin(Θ −Θ0)
R
R0

cos(Θ −Θ0)
h R
R0

cos(Θ −Θ0)− h
0 0 1

⎞

⎟
⎠

⎛

⎝
∂R

∂Θ
∂Z

⎞

⎠

p0

.

We then calculate the developing map, dev : M̃ → TpM̃, p = (R0,Θ0, Z0).
Let γ (t) = (R(t),Θ(t), Z(t)) be a curve based at p. Then,

Π̃
p
γ (t)(γ̇ (t)) = (

Ṙ cosΘ − Θ̇R sinΘ Ṙ sinΘ + Θ̇R cosΘ Ż − hΘ̇
)
⎛

⎝
∂x

∂y

∂z

⎞

⎠

p

= d

dt

(
R cosΘ R sinΘ Z − hΘ

)
⎛

⎝
∂x

∂y

∂z

⎞

⎠

p

.

Writing the developing map as a column vector with entries the components of the
parallel frame (∂x , ∂y, ∂z),

dev(R,Θ, Z) =
⎛

⎝
R cosΘ − R0 cosΘ0
R sinΘ − R0 sinΘ0
(Z − Z0)− h(Θ −Θ0)

⎞

⎠ .

We turn to calculate the monodromy. For k ∈ Z and q = (R,Θ, Z),

dev(ϕk(q)) = Ak dev(q)+ bk,

where

Ak = I and bk =
⎛

⎝
0
0

−2πhk

⎞

⎠ .

Thus, for a screw dislocation the linear part of the monodromy is the identity section
of End(T M̃), and therefore, as expected, the components of the translational part are
independent of q, namely, the translational part is a parallel vector field. Moreover,
it is a vector field parallel to the z-axis, that is, parallel to the locus of the dislocation,
as is expected for the Burgers vector of a screw dislocation.
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4.3. Edge Dislocations

Edge dislocations, like disclinations, are planar defects, that is, the geometry of
the body is axially symmetric. The Volterra cut-and-weld procedure that generates
an edge dislocation is depicted in Fig. 8a. Like in a screw dislocation, the body is
cut by a half-plane, however it is welded with a fixed offset perpendicular to the
half-plane boundary. If b denotes the fixed offset, then the locus of the dislocation
has to be a slit with length b. A visualization of an edge dislocation in a lattice is
shown in Fig. 8b. It is created by an extra half-plane of atoms inserted through the
lattice, distorting nearby planes of atoms. Note that it is not a priori clear why both
visualizations correspond to the same type of defect.

Another description of an edge dislocation is as a pair of wedge disclinations of
opposite magnitudes. Thus, if a disclination is viewed as a two-dimensional point
charge of Gaussian curvature (analogously to electrostatics, the metric, which is
related to the curvature via a Poisson equation, has a logarithmic singularity), an
edge dislocation should be viewed as a dipole of Gaussian curvature. In a hexagonal
lattice, the common occurrence of a wedge-anti-wedge pair is in the form of a
pentagon–heptagon pair [25]; see Fig. 9.

Fig. 8. a Sketch of an edge dislocation following Volterra’s cut-and-weld procedure. b Edge
dislocation in a lattice structure

Fig. 9. A pentagon–heptagon pair in a hexagonal lattice



1036 Raz Kupferman, Michael Moshe & Jake P. Solomon

Since the geometry of this defect is two-dimensional we will limit our analysis
to a plane, which we parametrize using the coordinates (X,Y ). We define the metric
of an edge dislocation using a two-dimensional conformal representation,

g = e2�(X,Y ) (dX ⊗ dX + dY ⊗ dY ) .

Recall that such a metric is locally-Euclidean if and only if � is harmonic. Since
we model an edge dislocation as a wedge anti-wedge pair, the locus of the defect
is a pair of parallel lines (points in two dimensions), which we take to be

{p1 = (−a, 0), p2 = (a, 0)}.
A conformal factor that corresponds to two disclinations of opposite signs is,

�(X,Y ) = β
{

log[(X − a)2 + Y 2] − log[(X + a)2 + Y 2]
}
. (15)

Note that the coordinates (X,Y ) are not Euclidean coordinates, hence the distance
between the two defects lines is not 2a, but rather

∫ a

−a
e�(X,0) dX = a

∫ 1

−1

(
X − 1

X + 1

)2β

dX.

This distance is finite for −1/2 < β < 1/2.
To obtain explicit expressions for parallel transport in T M we solve the Cauchy–

Riemann equations (14) for � given by (15), yielding

θ(X,Y ) = 2β

{
tan−1

(
Y

X − a

)
− tan−1

(
Y

X + a

)}
,

which can be defined as a smooth function with a branch cut on the segment along
the X axis that connects the two loci of the defect. θ has a jump discontinuity of
magnitude 4πβ across the branch cut (see Fig. 10).

With the aid of θ(X,Y ), we can prescribe how to parallel transport vectors as
long as they do not cross the branch cut. The frame field {e1, e2} given by (13)
is parallel. Note that the fact that there exists a global parallel frame field at the
exterior of a bounded domain indicates the existence of distant parallelism, which
is a characteristic of edge dislocations.

Inverting (13) we get

∂X = e�(cos θ e1 + sin θ e2)

∂Y = e�(− sin θ e1 + cos θ e2).

Thus, for p = (X,Y ) and a tangent vector v ∈ TpM written as
v = vX ∂X |p + vY ∂Y |p

= e�(p)
(
vX cos θ(p)− vY sin θ(p)

)
e1|p + e�(p)

(
vX sin θ(p)+ vY cos θ(p)

)
e2|p,

the parallel transport of v to p0 = (X0,Y0) via a curve that does not pass between
the two loci of the defect yields,



Metric Description of Defects 1037

Fig. 10. �(X, Y ) and θ(X, Y ) for β = 1/4 and a = 1

Π
p0
p (v) = e�(p)

(
vX cos θ(p)− vY sin θ(p)

)
e1|p0 + e�(p)

(
vX sin θ(p)+ vY cos θ(p)

)
e2|p0

= e�(p)−�(p0)
(
vX cos θ(p)− vY sin θ(p)

) (
cos θ(p0)∂X |p0 − sin θ(p0)∂Y |p0

)

+ e�(p)−�(p0)
(
vX sin θ(p)+ vY cos θ(p)

) (
sin θ(p0)∂X |p0 + cos θ(p0)∂Y |p0

)
.

In particular, for later use

Π
p0
p (∂X |p) = e�(p)−�(p0)

(
cos(θ(p)− θ(p0))∂X |p0 + sin(θ(p)− θ(p0))∂Y |p0

)
.

(16)

We now turn to calculate the monodromy of an edge dislocation. The funda-
mental group of a plane with two punctures is the free group on two generators.
Namely, the first generator is the homotopy class of loops that circle once around
the point (−a, 0) but do not encircle the other point. The other generator is the
homotopy class of loops that circle once around the point (a, 0). Indeed, the dou-
bly punctured plane is homotopic to a figure-of-eight. Since we are interested in the
structure induced by both defect lines together rather than each separately, we rede-
fine the defect locus D to be the closed segment [−a, a] × {0}. In particular, since
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Fig. 11. The contour used in the calculation of the translational part of the monodromy of
an edge dislocation

the fundamental group is abelian, we can associate the monodromy with sections
over M.

The existence of a “distant” parallel frame field implies that the linear part of
the monodromy is trivial, namely

Ag = Id.

To calculate the translational part of the monodromy, we take an arbitrary reference
point p0, denote �0 = �(p0), θ0 = θ(p0), and take the contour shown in Fig. 11.
This contour represents the generator g of the fundamental group. Then, using
Equation (16), we obtain

bg|p0 = e−�0 dist(p1, p2) [cos(2πβ − θ0)− cos(2πβ + θ0)] ∂X |p0

+ e−�0 dist(p1, p2) [sin(2πβ − θ0)+ sin(2πβ + θ0)] ∂Y |p0

= 2e−�0 dist(p1, p2) sin(2πβ)
(
sin θ0 ∂X |p0 + cos θ0 ∂Y |p0

)
.

For |p0| � 1 we get,

bg|p0 ≈ 2 dist(p1, p2) sin(2πβ) ∂Y |p0 .

As expected, bg is a parallel vector field, whose magnitude depends on the
distance between the two disclinations and on the magnitude of the disclinations.

4.4. Higher Multipoles: the Stone–Wales Defect

Disclinations and edge dislocations are two-dimensional defects; disclinations
are generated by point sources (monopoles) of Gaussian curvature, whereas edge
dislocations are generated by dipoles of Gaussian curvatures. Like in the electrosta-
tic analog, the dipole moment is independent of the reference point if and only if the
monopole vanishes. Unlike in the electrostatic analog, the dipole moment can be
calculated exactly and not just asymptotically at infinity. Notice that the Liouville
equation that relates the Gaussian curvature to the Laplacian of the conformal factor
can be viewed as a nonlinear analog of the linear Gauss equation in electrostatics.
Therefore, its solutions could have been expected to be less amenable to explicit
computations.
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Fig. 12. The Stone–Wales defect: four hexagons are converted into two pentagon–heptagon
pairs

In analogy to electrostatics, one is also interested in defects that are higher order
multipoles of Gaussian curvature. An example of such a defect is the Stone–Wales
defect found in graphene, where four hexagonal cells transform into two pentagon–
heptagon pairs [25] (Fig. 12). Since pentagons and heptagons constitute disclina-
tions of opposite signs, and since the configuration of the two pentagon–heptagon
pairs is anti-linear, the Stone–Wales defect constitutes a metric quadrupole.

Suppose we removed a part of the lattice that contains the two pentagon–
heptagon pairs. The remaining lattice would be perfect, that is, isometrically embed-
dable in the plane. This is obvious as the Stone–Wales defect can be eliminated
by a purely local change of lattice connectivities. This is not the case for a single
pentagon–heptagon pair, where the defect can be detected at any distance from its
locus. Thus, we expect a fundamental difference between metric monopoles and
dipoles on the one hand, and higher metric multipoles on the other hand.

Motivated by the Stone–Wales defect, we consider a metric quadrupole, which
can be realized using a two-dimensional conformal representation with four discli-
nations,

�(X,Y ) = β

4∑

i=1

si log[(X − Xi )
2 + (Y − Yi )

2], (17)

where s1 = −s2 = −s3 = s4 = 1, and (X1,Y1) = (a, a), (X2,Y2) = (−a, a),
(X3,Y3) = (a,−a), and (X4,Y4) = (−a,−a). Correspondingly, the angle θ
between the parallel frame and the parametric frame is

θ(X,Y ) = 2β
4∑

i=1

si tan−1
(

Y − Yi

X − Xi

)
.

The branch cuts of the four addends can be chosen such that θ is smooth outside
the rectangle whose vertices are the singular points, see Fig. 13.
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Fig. 13. �(X, Y ) and θ(X, Y ) for a metric quadrupole with β = 1/4 and a = 1

Like for a doubly-punctured plane, we will restrict our attention to loops that
encircle all four singular points. Namely, we redefine the defect locus D to be the
rectangle [−a, a] × [−a, a]. Then symmetry considerations show that the mon-
odromy is trivial. This implies, as we show, that the defect is local in the following
sense: there exists compact subset K ⊂ M such that M \ K embeds isometrically
in the plane. In other words, except for a bounded region around the loci of the
defect, the entire surface can be embedded isometrically (not only locally) in the
Euclidean plane.

Theorem 4. Let M be R
2 \ [−a, a]2 equipped with the Riemannian metric deter-

mined by the conformal factor (17). Then there exists a compact set K ⊂ M such
that M \ K embeds in the plane.
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Proof. We will exploit the relation between conformal coordinates and complex
manifolds. Denote Z = X + i Y . Since the monodromy is trivial, the developing
map descends to a map

dev : M → Tp0M,

for any p0 ∈ M. If

dev(X,Y ) = x(X,Y ) ∂X |p0 + y(X,Y ) ∂Y |p0 ,

then set devC : C → C to be

devC(Z) = x(X,Y )+ i y(X,Y ).

It is easy to see that

devC(Z) = e−�C(Z0)

∫ Z

Z0

e�C(W ) dw, (18)

where �C : C → C is the complexified conformal factor,

�C(Z) = � + iθ = 2β log
(Z − Z1)(Z + Z1)

(Z − Z2)(Z + Z2)
.

The trivial monodromy implies that (18) is path-independent.
The developing map is a local isometry. It remains to show that up to the

possible exclusion of a compact set it is one-to-one, that is, that devC is one-to-one
in a neighborhood of infinity. Note that

dev′
C
(Z) = e�C(Z)−�C(Z0),

which has a non-zero limit e−�C(Z0) at infinity. Hence, devC(Z) has an expansion

devC(Z) = e−�C(Z0)Z +
∞∑

n=0

αn

Zn

in a neighborhood of infinity. Using the classical inversion,

g(Z) = 1

devC(1/Z)
,

we have

g′(Z) = dev′
C
(1/Z)

Z2 dev2
C
(1/Z)

hence

lim
Z→0

g′(Z) = lim
Z→∞

dev′
C
(Z)

Z−2 dev2
C
(Z)

= e�C(Z0).

It follows that g′ has a removable singularity at zero and a non-zero limit. By the
inverse function theorem, g is one-to-one in a neighborhood of zero, and therefore
devC is one-to-one in a neighborhood of infinity. Note that this analysis is applicable
for every conformally represented metric with trivial monodromy and a conformal
factor that vanishes at infinity.
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4.5. Two-Dimensional Defects with Trivial Monodromy: the General Case

The result of the previous subsection whereby a locally Euclidean surface with
trivial monodromy embeds (excluding a compact set) in the Euclidean plane can
be generalized without requiring the existence of a global system of conformal
coordinates. In fact, it can be formulated as a theorem for affine embeddings.

Theorem 5. Let M be a connected affine manifold with boundary. Suppose that

1. M is geodesically complete, that is, geodesics extend indefinitely unless they
hit the boundary.

2. π1(M) = Z.
3. ∂M is homeomorphic to a circle.
4. M has trivial monodromy.
5. There exists a simple closed curve in M that is not null homotopic (that is, not

contractible) and has winding number one.

Then, there exists a compact subset K ⊂ M, such that M \ K embeds affinely in
the Euclidean plane.

Recall that the winding number of a closed curve in the plane is the total number
of times that its tangent rotates. The winding number of a curve in M is well-defined
because tangent vectors can be translated unambiguously to a joint reference point.
In fact, the winding number of a closed curve is given by the winding number of
its image under the developing map.

Proof. Since the proof is somewhat long and technical, we will break it into short
steps:

(i) M is an affine manifold. A locally Euclidean metric can be defined on M

by prescribing an inner-product on TpM for some arbitrary point p, and
parallel transporting tangent vectors to p; Assumption 4 guarantees that
parallel transport is path-independent.

(ii) Geodesic completeness implies metric completeness. This is the well-
known Hopf–Rinow theorem [9, pp. 146–149]. Note that the classical
theorem is for a geodesically complete manifold without boundary. It is not
hard to generalize the Hopf–Rinow theorem to manifolds with boundary: a
manifold is metrically complete if and only if geodesics extend indefinitely
unless they hit the boundary.

(iii) It follows from Assumption 4 that the developing map descends to a func-
tion dev : M → TpM ∼= R

2 for a reference point p ∈ M. Indeed, for
q ∈ M let γ be a curve in M connecting p to q. Then

dev(q) =
∫
Π

p
γ (t)(γ̇ (t)) dt.

The triviality of monodromy implies that this integral does not depend on
the chosen curve.

(iv) By Proposition 6 dev is a locally affine map (also a local isometry), and
in particular, a local diffeomorphism in Int(M).
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(v) Even though ∂M is homeomorphic to a circle, its image under dev is not
necessarily a simple curve. Let L ⊂ R

2 be an open disc that contains
dev(∂M), and let K = dev−1(L).

(vi) K is bounded and connected by the following argument: by the complete-
ness and connectedness of M, and a version of Hopf–Rinow for manifolds
with boundary, any point of M and, in particular, any point of K can be
connected to ∂M by a geodesic γ. Since dev is locally affine by step (iv),
it follows that γ̄ = dev ◦γ is a geodesic. Since L is convex, and the end-
points of γ̄ belong to L, we conclude that γ̄ ⊂ L. Thus the length of γ̄
is less than the diameter of L . It follows that the length of γ is also less
than the diameter of L . So, the distance from any point of K to ∂M is
bounded. Moreover, ∂M is compact by assumption 3 and thus bounded.
Therefore, K is bounded as claimed. Similarly, the fact that γ̄ ⊂ L implies
that γ ⊂ K . So any point in K can be connected within K to a point of
∂M. Moreover, ∂M is connected by assumption 3. So K is connected as
claimed.

(vii) K is compact because it is closed and bounded.
(viii) It follows from step (iv) and the Implicit Function Theorem that K is a

manifold with boundary and

∂K = ∂M ∪ dev−1(∂L).

In particular, ∂K is a union of circles.
(ix) M \ K is complete because it is a closed subset of a complete manifold.
(x) It follows from the proof of Lemma 3.3 in Chapter 7 of [9] that

dev : M \ K → R
2 \ L

is a covering map; denote by d the degree of the covering.
(xi) ∂(M \ K ) is closed and bounded hence compact.

(xii) It follows from the classification of covering spaces together with the
previous step that M \ K is a union of annuli.

(xiii) The second homology group H2(M) vanishes by the following argument:
The interior of M is non-compact, so Proposition 3.29 from [13] implies
its second homology is trivial. But M is homotopy equivalent to its interior,
so its homology is the same.

(xiv) It follows from the previous step and a Mayer–Vietoris argument that
H1(K ) � Z.

(xv) By classification of surfaces, K is a (single) annulus.
(xvi) By the previous step, ∂K is a union of two circles. So, by step (viii) we

have ∂(M \ K ) � S1.
(xvii) Hence M \ K is an annulus.

(xviii) Since M is the union of two annuli, M \ K and K , along their joint
boundary, it follows that M is an annulus.

(xix) Let γ be a simple closed curve in R
2 \ L . It has winding number one.

(xx) Let γ d be the concatenation of γ with itself d times; it has winding number
d.
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(xxi) Let γ̃ be a lifting of γ d to M \ K , that is, dev ◦γ̃ = γ d . Then by cover-
ing space theory, γ̃ is a simple closed curve that generates π1(M) � Z.
Moreover, since lifting preserves winding number, the winding number of
γ̃ is d.

(xxii) By classification of simple closed curves on an annulus (compare with the
case of the torus in Chapter 1 of [10]), every two non-contractible simple
closed curves on a annulus are homotopic. By Proposition 1.10 of [10],
every two simple closed curves in a surface that are homotopic are also
isotopic. Together with Assumption 5 it follows that γ̃ is isotopic to a
curve that has winding number one, hence d = 1.

(xxiii) Since dev is a covering of degree one it is bijective. A bijective map that
is locally affine is an affine embedding; this concludes the proof.

4.6. Point Defects

We next briefly consider point defects, that is, manifolds in which the locus
of the defect is a point, or a finite collection of points. In three dimensions, M is
simply connected, which implies a trivial fundamental group, and therefore a trivial
monodromy. The implication is that point defects cannot be detected in the same
way as line defects, by making metric measurements around loops that encircle the
defect.

Consider, for example, a point defect of type vacancy. The Volterra cut-and-
weld procedure in this case would be to remove from R

3 a ball of radius a (say,
centered at the origin) and weld the boundary of this ball into a single point. M.
Here we take M = R

3 \ {0}, which we parametrize using spherical coordinates,

(R,Θ,Φ) ∈ (0,∞)× [0, π ] × [0, 2π),

and the metric is

g = dR ⊗ dR + (R + a)2 dΘ ⊗ dΘ + (R + a)2 sin2Θ dΦ ⊗ dΦ.

The vacancy manifests in that the intrinsic geometry in its vicinity has “too much
length”; the surface area of spheres that converge to a single point—the locus of
the defect—does not tend to zero.

Here too, like for the two-dimensional defects considered in the last subsection,
the trivial monodromy manifests itself in the fact that if a compact set that contains
the locus of the defect is removed, the punctured manifold embeds isometrically in
Euclidean space.

5. Discussion

This paper is concerned with the description of singular defects in isotropic
media. The geometric structure of such materials is fully encoded in their reference
metric. We showed that topological defects can be fully described by geometric
fields that only reflect the metric structure. More specifically, topological defects
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are described by the affine structure induced by the locally Euclidean metric. In
particular, dislocations are described by the affine structure without reference to
torsion.

It is important to stress that our approach does not contradict former approaches.
As showed by Wang almost 50 years ago, non-Riemannian material connections
arise naturally in media that exhibit discrete symmetries. Our statement is that the
“failure of parallelograms to be closed” can be fully captured in isotropic media by
the translational part of the monodromy, which only depends on the postulated affine
structure. Note that the moment that topological defects are encoded by a metric,
they can be realized without the need to break any structure. For example, both
disclinations and edge dislocations can be created by imposing a two-dimensional
reference metric via differential swelling, as in [15], with a swelling factor that is
harmonic everywhere but at a finite number of points.

Another observation is the relation between disclinations and dislocations as
monopoles and dipoles of curvature charges, and their electrostatic analog. As in the
electrostatic analog, the dipole moment is independent of the reference point if and
only if the monopole moment vanishes, thus answering the question raised by Miri
and Rivier [21] about the coexistence of disclinations and dislocations. Yet, unlike
in the electrostatic analog, the dipole moment (reflected by the translational part of
the monodromy) can be calculated exactly, and not just asymptotically at infinity,
by metric measurements around loops that encircle the locus of the defect. In this
respect, the nonlinear Laplace equation that connects the metric to the Gaussian
curvature turns out to be “simpler” than the linear Poisson equation in electrostatics.

Another result of the present paper is that every two-dimensional metric that has
trivial monodromy can be isometrically embedded in the plane, up to the possible
need to exclude a compact subset. In practical terms, this means that every defective
plane in which the defect cannot be detected by metric measurements along a curve
that encircles the locus of the defect can be embedded in Euclidean plane with
metric distortions restricted to a compact set. This observation, which is relevant,
for example, to known defects in graphene, has immediate implications on the
elastic energy associated with such defects.

Our paper is concerned with the description of defects, and does not present
calculations of residual stresses in bodies with defects. To calculate stresses one
needs a concrete model, for example, a neo-Hookean solid as used in [29], with
strain measured relative to the postulated reference metric.
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