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ABSTRACT

The mechanical properties of amorphous solids like metallic glasses
can be dramatically changed by adding small concentrations (as low
as 0.1%) of foreign elements. The glass-forming-ability, the ductility,
the yield stress and the elastic moduli can all be greatly effected. This
paper presents theoretical considerations with the aim of explaining
the magnitude of these changes in light of the small concentrations
involved. The theory is built around the experimental evidence that
the microalloying elements organise around them a neighbourhood
that differs from both the crystalline and the glassy phases of the
material in the absence of the additional elements. These regions
act as isotropic defects that in unstressed systems modify the shear
moduli.When strained, these defects interactwith the incipient plastic
responses which are quadrupolar in nature. It will be shown that
this interaction interferes with the creation of system-spanning shear
bands and increases the yield strain. We offer experimentally testable
estimates of the lengths of nano-shear bands in the presence of the
additional elements.
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1. Introduction

The history of the production of amorphous metallic glasses spans by now more than
seven decades. Originally, Buckel and Hilsch [1] accidentally formed amorphous metals
by vapour deposition of one or several component systems onto an ultra-cold substrate.
Later, Duwez [2] discovered that an alloy in its eutectic composition with an eutectic
temperature as low as possible (Au–Si) is very much favoured to exist even at room
temperature and above in a non-crystalline form. But only the intentional addition of a
third or more element made bulk metallic glasses possible, for example A. Inoue’s and
W.L. Johnson’s alloys in the early 1990s [3,4].

For more than 20 years it has been known that small additions of a further alloy
component can greatly enhance the glass-forming-ability of metallic glasses, measured
as the largest radius of a cylinder of a metallic glass without a crystalline core. In the
last 10 years hundreds of microalloyed systems have been presented by the various active
groups in China, US, Japan, Korea and Europe [5]. It was argued that an important effect
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Figure 1. (colour online) The effect of a small concentration of an Sn and Ge on the toughness of Al–Cu
metallic glass [27].

of adding a minute amount of foreign atoms is on the eutectic temperature of the mixture.
There is a dip in the crystallisation temperature for a liquid system cooled down into the
glass regime as a function of the microalloying concentration that reaches a minimum at
some finite but small concentration (say 1%). Remarkable cusps have been observed in the
glass-forming-ability of many alloys with a width in composition down to 0.1% or even
less [5,6]. These cusps reflect exactly the extremely deep lying (in temperature) eutectic
points. In other words, the liquid is extremely stabilised against partitioning into the
stable crystalline or polycrystalline phases. Whether this is due to chemical or topological
barriers is an actual debate. But this stabilisation of the liquid state down to extremely low
temperatures by minute additions of another component can also be seen in the liquid
properties like diffusion constants [7], formation of special local structures [8] or fragility
[9]. Microalloying also delays the failure of metallic glasses, increasing its toughness as
defined by the integral under the stress vs. strain curve, see Figure 1.

A number of papers in the literature have proposed that the short- and medium-range
order in metallic glasses can be partially accounted for by icosahedra or quasi-crystalline
clusters. Of course, such quasicrystalline clusters of atoms cannot grow beyond a certain
size because of local frustration. This suggestion was originally proposed by Kivelson et
al. [10]; this idea was extended by de Gennes [11]. For example, the atomic structure
of the Cu35Zr65, Cu50Zr50 and Cu65Zr35 metallic glasses were investigated by means of
high-energy X-ray diffraction and neutron diffraction, and the geometric short-range
order found could be characterised by a variety of polyhedra [12]. Another example is the
formation of an icosahedral quasicrystalline phase followed by crystallisation of tetragonal
CuZr2 which has been observed in the Zr70Cu29Pd1 glassy alloy during annealing up to
850K [13].

Molecular dynamics simulations have given similar clues. For example, Lekka et al.
[14] concluded from molecular dynamic simulations of Cu46Zr54 glasses that 23% of the
atoms belonged toCu– centred icosahedral clusters and about 41%belonged toZr– centred
clusters.While Lee et al. [15] showed that inmolecular dynamics simulations of a Cu65Zr35
there were polyhedral clusters, of which 15% were ideal icosahedra.

Perhaps the most likely clusters formed in metallic glasses are the Frank–Kasper [16]
close-packed clusters whose quasicrystalline short-range order is incompatible with either
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the ground state crystalline symmetry of the surrounding matrix or the random metallic
glass phase. In some cases [8] these form as much as 20% of the observed clusters. Thus
in NiP glasses up to 16% of such Kasper polyhedra have been found, while in Ni81B19
metallic glasses Kasper polyhedra are dominant (at about 17.8 and 7.1%, respectively). In
fact, it has been proposed that Kasper polyhedral short-range order is the main underlying
topological short-range order in metallic glasses.

In this paper, we propose that the microalloying particles may be nucleating a patch
of a new local structure around themselves that frustrates the formation of the pure
crystalline phase, being incompatible with both the equilibrium crystalline order and with
the glassy disorder. Whether these patches are crystalline (with different crystal structure
than the thermodynamic equilibrium phase of the unadulterated glass) or icosahedral
(quasicrystalline) in nature is still debated but will not be important for our considerations.

Accepting the point of view that the microalloying particles organise around them a
local structure that differs from the bulk structure, we will treat them in this paper as
defects in the bulk structure, and seek a theoretical explanation for their influence on the
mechanical properties of the glass. Importantly, we will assert that on scales larger than
the local patches around the foreign elements these defects interact isotropically (i.e. the
defects have spherical symmetry). We will show that they interact with the plastic events
that occur in metallic glasses under straining, and the latter are not spherically symmetric.
Rather, plastic events have quadrupolar symmetry as predicted by the theory of Eshelby
inclusions [17], and see also [18]. In two dimensions the difference is easy to characterise,
in terms of the SO(2) symmetry group; we treat the isotropic defect as having an � = 0
characteristic whereas the plastic quadrupolar displacement fields associated with plastic
instabilities have an � = 2 characteristic.

In Section 2, we review the theory of the mechanical instability in amorphous solids
that leads to shear banding, and explain why the existence of even a single isotropic defect
can defer the instability, leading to higher toughness of the material. For the sake of clarity
and simplicity, we limit the discussion to systems in two dimensions. The generalisation to
three dimensionswill be commented upon in the last section. In Section 3we treat a density
of � = 0 defects and show that it is expected to result in increasing the toughness of the
material, leading to the appearance of arrested shear bands of finite length. The expected
length of the arrested shear bands is estimated in Section 4. We also explain why an even
larger concentration of foreign elements is not beneficial for increasing the toughness of
the material. These predictions should be tested in experiments. Finally, Section 5 offers a
summary, a discussion and some comments about the road ahead.

2. The effect of a single isotropic defect on the shear banding instability in
two dimensions

In this section, we construct the theoretical framework to discuss the effect of isotropic
(� = 0) defects on the shear banding instability in two-dimensional amorphous solids.We
begin with a short review of the microscopic theory of the shear banding instability in the
unadulterated glass.
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Figure 2. (colour online) A window into the simulations cell with coordinates in Lennard-Jones units.
Notes: Shown is a typical plastic instability at small values of the external strain. Left panel: the
displacement field associated with the plastic event as observed in numerical simulations, cf. Ref.
[21]. Right panel: the displacement field of an Eshelby solution where the eigenstrain and the core-
size were fitted to the numerically found instability. The quadrupolar structure with power law decay
towards infinity is obvious.

2.1. Review of the shear banding instability in two-dimensions

Plastic responses in amorphous solids are sensitive to temperature effects, strain rates and
the mode of external loading. For simplicity and concreteness in the present discussion
we will focus on amorphous solids in athermal conditions (T = 0 or in practice T � Tg
where Tg is the glass transition temperature). We will also limit ourselves to pure external
shear strains which are area preserving since the nature of the shear banding instability is
sensitive to loading that is non-area preserving, cf. [22]. Denoting the external strain by γ
(without tensorial indices since we have only shear strain), we consider the limit γ̇ → 0
(quasi-static conditions) where the theory appears in its cleanest form. The numerical
protocol used to produce the results shown below in Figures 2 and 3 is described in
Appendix 1. Under these conditions, plastic instabilities are identified by the vanishing of
an eigenvalue of the Hessian matrix of the system. Denoting the total energy of the system
by U(r1, r2, . . . rN ) where {ri}Ni=1 is the array of particle positions, the Hessian matrix is
defined by

Hi,j ≡ ∂2U(r1, r2, . . . rN )
∂ ri∂ rj

(1)

As long as all the eigenvalues of the (symmetric and real) Hessian matrix H are positive,
the system is stable. Plasticity is the consequence of an instability with at least one of the
eigenvalues λp going to zero at some value of the strain γ = γP . It was shown that at that
value of the strain the associated eigenfunction�p localises on the particles that participate
in the plastic events [19]. In fact the eigenfunction which is extended as long as λp > 0
localises precisely on the non-affine plastic displacement field that is associated with the
plastic instability.

The nature of the displacement field associatedwith the plastic instability differs dramat-
ically when γ is small and when γ is large. For small values of γ , when the system is deep in
the ‘elastic’ region, plastic events are small (localised), having a quadrupolar structure that
is excellently modelled by the displacement field associated with an Eshelby inclusion, cf.



PHILOSOPHICAL MAGAZINE 1403

Figure 3. (colour online) A window into the simulations cell with coordinates in Lennard-Jones units.
Notes: Typical plastic instability at large values of the external stain. Left pannel: the displacement field
associated with a system-spanning plastic event, localizing the displacement around a narrow line [21].
Right panel: a model of the same event using a series of Eshelby quadrupoles. Now there exists a global
connection between the outgoing and ingoing displacement fields on the quadrupoles, localising the
displacement on a thin line.

Figure 2. At larger values of γ , above some theoretically computable value γY , the instability
appears as the simultaneous inception of a whole line of quadrupoles, system spanning,
which organise the displacement field on a narrow linewith the displacement field pointing
in opposite directions above and below the line, see Figure 3. It was shown [20,21] that the
single quadrupole solution is aminimal energy solution as long as γ < γY but when γ > γY
the system-spanning line of quadrupoles is winning, being the minimal energy solution.
This solution requires that the quadrupoles will be ‘in phase’, meaning that the stable
(respectively unstable) direction of every quadrupole is parallel to the stable (respectively
unstable) direction of every other quadrupole. In otherwords, the quadrupoles are oriented
in the same way with respect to the line joining their cores, and this line should be at 45◦
with respect to the principal stress axis. The reader is referred to Refs. [20–22] for a full
explanation of these findings. In the next subsection, while preparing for the analysis of the
effect of the � = 0 defect, we will shed more light on the phenomenon. It is important to
stress that in the quasi-static strain controlled protocols which are used in our numerical
simulations the ‘strain rate’ is always zero, even when system spanning plastic instabilities
take place. One is increasing the strain infinitesimally and the system is allowed to complete
its non-affine response before the strain is increased further.

2.2. Theoretical considerations

The elastic energy of interaction between � = 0 and � = 2 defects can be modelled as the
interaction between Eshelby inclusions, where the case of � = 2 corresponds to a purely
deviatoric inclusion, and the case of � = 0 corresponds to a purely isotropic inclusion.
A calculation for the interaction between two � = 2 defects was presented in [20,21].
Although it is possible to extend the calculations shown in [20,21] to include both � = 0
and � = 2 defects, here we adopt a different approach whose elaboration can be found in
Refs. [23,24]. This approach relies on a geometric formulation of incompatible elasticity.
According to this approach, localised plastic deformations are sources for residual stresses,
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Table 1. Elastic charge sources K̄ and their corresponding elastic potentials ψ . The superscript ‘T’ refers
to ‘transpose’.

Type K̄ ψ

Point 1
2 P�δ(x) (YP /4π) ln |x|

Quadrupole 1
4 (∇T · Q · ∇)δ(x) (Y/16π) (x̂T · Q · x̂)

External stress – 1
2 (x

T · Cof(σ ) · x)

whose energetic implications are very similar to those of charge densities in electrostatics.
These stress densities are quantified by a single scalar function K̄ , and in the case of
an elastic solid they act as source terms for the Airy stress function ψ which solves the
bi-Laplace equation

��ψ(x) = YK̄(x), (2)

where� is the Laplace operator and Y is the Young’s modulus.
For example, the far field description of an � = 0 defect within this formulation is given

by an elastic charge singularity of the form

K̄(x) = 1
2
P�δ(x). (3)

Here P = πa2isoε
∗
iso where aiso will take the physical meaning the core size of the isotropic

‘patch’ around our microalloying particle and ε∗iso is the eigengstrain associated with the
isotropic inclusion. Positive or negative values of P correspond, respectively, to expansion
or contraction due to the inclusion.

In electrostatics, two singular charge densities ρ1 and ρ2 induce electrostatic potentials
φ1 andφ2 through the Poisson’s equation. The interaction between two such electric charge
densities is Uel = ∫

φ1(x)ρ2(x) dx. In [24], it was shown that the same holds for elastic
stress densities. That is, consider two singular stress densities described by K̄1 and K̄2. Each
of these induces (through Equation (2)) an elastic potential denoted as ψ1 and ψ2. The
energy associated with their interaction is

U =
∫
ψ1(x)K̄2(x) dx =

∫
ψ2(x)K̄1(x) dx. (4)

This result is the key for obtaining simple explicit expressions for the interactions between
defects, and their interactions with external fields.

A short list of possible singularities K̄ togetherwith their corresponding elastic potentials
ψ are listed in Table 1.

Here ∇ is the nabla operator,Q is a traceless symmetric matrix

Q =
(

Q1 Q2
Q2 −Q1

)
, (5)

and Cof( · ) is the Cofactor of the matrix concerned.
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Given a purely deviatoric inclusion oriented with angle θ measured from the x axis, its
quadrupolar charge is

Q = Q
(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
. (6)

Here Q = πa2quadε
∗
quad with, as before aquad being the core size of the quadrupolar

singularity and ε∗quad its eigenstrain. Given two such deviatoric inclusions withmagnitudes
Q1 and Q2, oriented by θ1 and θ2 measured from the line connecting them, their elastic
interaction energy is obtained by substituting ψ of one quadrupole and K̄ of the second
quadrupole in Equation (4):

UQQ = YQ1Q2

16πr2
cos (2θ1 + 2θ2). (7)

Similarly, we obtain an expression for the interaction between an � = 0 defect located
at the origin, with an � = 2 defect located at distance r, with an orientation θ measured
from their connecting line

UQP = YQP
8πr2

cos (2θ). (8)

With an external fields present, its interaction with the quadrupoles should be taken
into account. Using the same procedure (see for e.g. [23]), we find that the interaction of
an external shear σ with a quadrupole is

UQγ = −1
2
QYγ sin (2θ) (9)

where now θ is measured from the direction of the shear’s principal axis, taken below to
be the x axis. Here γ is the strain measured with respect to an appropriate reference point.
Note that external fields do not interact with � = 0 defects.

2.3. Formation of shear bandwithoutmicroalloying

In previous work, it was shown that when the external strain is sufficiently large, a line of
quadrupoles cab appear spontaneously as a result of plastic instability. Their orientations
appear highly correlated. To see this using the present formalism deduce from Equation
(9) that the energy is minimised for θ = π/4 (for positive strain).

To explain the formation of the quadrupoles along a line, we examine their interaction
with each other, rewriting Equation (7) for a general orientation of the line with respect to
the x axis:

UQQ = YQ2

16πr2
cos (2θ1 + 2θ2 − 4φ) , (10)

where φ is the angle between the x axis and the line that connects the quadrupoles. This
interaction energy is minimised for 2θ1 +2θ2 −4φ = π . In the absence of an external field
there is a degeneracy in the energy minimising configurations. Two representative energy
minimising configurations are shown in Figure 4. When an external shear exists, the
energy is minimised for φ = 0, that is the quadrupoles are aligned parallel to the external
shear, all with the same angle of π/4. These results hold for any set of quadrupoles; given
N quadrupoles subjected to external shear, their optimal position is along a line with the
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Figure 4. Possible relative orientations of two quadrupoles that minimise their interaction energy
without an external strain. With external shear strain the degeneracy is removed, and only the lower
panel survives.

same orientation of π/4. Arranged like this they form a connection between the incoming
and outgoing directions of the quadrupolar displacement field, resulting in a shear band.
It was shown in Refs. [20,21] that at sufficiently large external strain γ ≥ γY this solution
is energetically favourable compared to a single localised quadrupolar displacement field.
We will explain now that in the presence of isotropic defects one must increase γ further
to allow for the spontaneous appearance of this system-spanning instability.

2.4. The effect of an isotropic defect

An � = 0 defect describes the uniform expansion or contraction of a small region inside a
material. We rewrite now Equation (8) for a general orientation

UQP = YPQ
8πr2

cos (2θ − 2φ) , (11)

where the isotropic defect is at the origin and the quadrupole is at a point (r,φ). The angle
θ is the quadrupole orientation.

Now the value of θ that minimises the energy depends on the sign of P. In Figure 5,
we show two different optimal relative configurations of the quadrupole associated with
opposite signs of P. One should note that it is not the size of the microalloying atom which
is at stake here, but rather the contraction or expansion effect of the organised patch around
the atom. Much work had been devoted to analyzing ‘small’ or ‘large’ atoms [25], but in
reality the important physics lies in their ability to nucleate patches rather than their own
size. In these notes we assume a contraction (P < 0), hence the minimiser is obtained for

θ + φ = π/2, (12)
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Figure 5. (colour online) The orientations of a quadrupole that minimise its interaction energy with an
� = 0 defect. The two orientations are associated with a negative or a positive P.

meaning that the quadrupole is perpendicular to the connecting line of the quadrupole
and the isotropic defect.

2.5. Array of quadrupoles near a single isotropic defect

In this subsection, which is central to our theory, we demonstrate how the existence of a
single isotropic defect interfere with the creation of a shear band via a system spanning
plastic instability.

Consider a linear array of 2N quadrupoles with charges Q, positioned at (xi, yi) =
((2i + 1)L, r), having orientations θi, with i ∈ (−N ,−N + 1, . . . ,N − 2,N − 1). At the
origin there is an isotropic defect of strength P, and the system is subjected to external
strain. The elastic interaction energy is

U = −1
2
YγQ

∑
i

sin (2θi)+
∑
i 
=j

EQ2

16πr2ij
cos (2θi + 2θj)

+ YPQ
8π

∑
i

(
x2i − y2i
(x2i + y2i )2

cos (2θi)+ 2xiyi
(x2i + y2i )2

sin (2θi)

)

+ US. (13)

where rij are the vector distances between the quadrupoles i and j and US is composed of
the self energies of the quadrupoles and the isotropic defect.

At this point, we seek the orientation of the set of quadrupoles that minimises the total
elastic energy. For P = 0 the problem is reduced back to the one studied in [20,21]. The
result in this case is simply θi = π/4.

In the presence of an isotropic defect, the problem cannot be solved analytically, and we
resort to a numerical solution. There are three independent dimensionless parameters in
Equation (13). The first is the ratio of amplitudes of the isotropic and quadrupolar defect
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Figure 6. (colour online) The angle of the quadrupole θ of the set of 50 quadrupoles in the presence of
an isotropic defect p̂ = 5, ζ = 5, and no shear � = 0.

p̂ = P/Q. The second is the scaled distance ζ = r/L and last is the rescaled external
strain � = γ L2

Q . In the following figures, we plot the optimal orientations of quadrupoles
for several values of p̂, ζ ,�. In Figure 6 we show the optimal orientation of a set of 50
quadrupoles in the presence of an isotropic defect with p̂ = 5, ζ = 5, and no external
strain, i.e. � = 0.

The x axis in this figure corresponds to the position of the quadrupole along the line, and
the y axis corresponds to the angle θ of the direction of the quadrupole that minimised the
elastic energy. Note that when there is no external strain, there are two equal orientations
θ = ±π/4 for which the energy of the line of quadrupoles is at a minimum. When an
istorpic defect is placed at the origin, this can cause a flip from θ = π/4 to θ = −π/4. We
should stress however that at γ = 0 one does not expect a line of quadrupoles, since the
single quadrupole solution has a lower energy.

In Figure 7 we plot a similar graph, for several non-zero external shear strains � =
(5×10−3, 10−2, 3×10−2, 10−1, 3×10−1). With a finite external strain the preferred angle
θ sufficiently far from the � = 0 defect is always θ = π/4. The presence of the defect
perturbs this angle, with the quadrupoles that are closest to the defect being disturbed
most. Note the asymmetry in the amount of perturbations of the angles of the quadrupoles
on the right and on the left parts of the isotropic defect. This stems from the fact that
the positions of the quadrupoles are right-left symmetric, their orientation is not. The
interactions with quadrupoles on the right and on the left are not the same.

Of course, with the quadrupoles perturbed, the associated displacement field cannot
be described by a thin system spanning shear-band. In order to obtain a spanning shear-
banding instability one needs to increase the external strain to overcome the perturbation
of the isotropic defect. While this does not provide yet a full explanation to the data shown
in Figure 1, it indicates the physical origin of the phenomenon. To understand it fully we
need to consider a density of isotropic defects as done in the next section.

For completeness, we show results of a similar calculation for a given value of the
external strain but with other values of p̂ and ζ . In Figure 8 we take ζ = 5, � = 0.1, and
p̂ = (1, 3, 5, 10, 20). In Figure 9 we take p̂ = 5, � = 0.1, and ζ = (2, 4, 6, 10, 15).

The reader should note the interesting up-down-up oscillation in the response of the
computed angles to the presence of the isotropic defect. The upward oscillation can be
interpreted as a screening effect.
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Figure 7. (colour online) The angle of the quadrupole θ of the set of 50 quadrupoles in the presence of
an isotropic defect p̂ = 5, ζ = 5, and for various shear values:� = 5× 10−3, 10−2, 3× 10−2, 10−1, 3×
10−1). As the external strain is increased the effect of the perturbation decreases.

Figure 8. (colour online) The angle of the quadrupole θ of the set of 50 quadruoples in the presence of
an isotropic defect � = 0.1, ζ = 5, and for various values of p̂: p̂ = 1, 3, 5, 10, 20. As p̂ is increased the
effect of the � = 0 defect strengthens.

3. The increase in yield strain due to a density of isotropic defects

In this section, we attempt to demonstrate the increase in the yield strain due to the
existence of a density of � = 0 defects. To this aim we consider below an infinite two-
dimensional body containing a dilute array of isotropic defects. As a preparatory step, we
consider first a square array of isotropic defects of fixed strength P. Understanding this
easier case will help later with the case of a random distribution of isotropic defects.
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Figure 9. (colour online) The angle of the quadrupole θ of the set of 50 quadrupoles in the presence of
an isotropic defect p̂ = 5, � = 0.1, and for various values of ζ : ζ = 2, 4, 6, 10, 15. As ζ increases the
effect of the � = 0 defect decreases.

Denote as lp the distance between neighbouring isotropic defects. With (i, j) ∈ N × N

their positions in cartesian coordinates are

(xi, yj) = ((α + i) · lp, (β + j) · lp) , 0 < α,β < 1 . (14)

The material is subjected to external shear strain γ , and the elastic energy stored in the
system at this stage is set to zero. At this point, we ask if the formation of a linear array of
quadrupoles can reduce the elastic energy stored in the system.

We start with a single quadrupole located at the origin. This quadrupole interact with
the external shear andwith the isotropic defects. In addition it contributes a self-interacting
term to the elastic energy. The interaction energy of such quadrupole with an isotropic
defect located at (x0, y0) is

Eqp = PQY
2π

(
x20 − y20(
x20 + y20

)2 cos 2θ + 2x0y0(
x20 + y20

)2 sin 2θ
)

(15)

Substituting the positions of the isotropic defects and summing over all of them we find
the elastic energy interaction

Eiqp = PQY
2π

(
f (α,β) cos 2θi + g(α,β) sin 2θi

)
, (16)

where

f (α,β) = 1
l2p

∞∑
i=−∞

∞∑
j=−∞

x2i − y2j(
x2i + y2j

)2 ≡ 1
l2p
f̃ (α,β), (17)
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and

g(α,β) = 1
l2p

∞∑
i=−∞

∞∑
j=−∞

2xiyj(
x2i + y2j

)2 ≡ 1
l2p
g̃(α,β). (18)

Note that for the case of a random distribution of defects f and g are different for each
quadrupole, and therefore effectively α and β are functions of quadrupoles positions. We
will use this later.

The interaction with the external shear is

EShear = −1
2
YQγ sin 2θ , (19)

and the self interaction term is

ESelf = YQ2

16πa2
. (20)

Since we are interested in a linear array of quadrupoles, we consider a domain in the
material (x, y) ∈ [0, L]× [−∞,∞], with a set of quadrupoles located at (xi, yi) = (i · lq, 0).
Here lq is the distance between the quadrupoles. We further simplify the problem by
assuming L = k · lq = n · lp, that is the length L is equal to an integer multiple of lp, and so
is lq = m · lp.

We denote by ρp ≡ n
L = 1

lp the isotropic defects density, and ρq ≡ k
L = 1

lq the
quadrupoles density. In addition to the list of interactionsmentioned above, eachquadrupole
interacts nowwith all the other quadrupoles. This interaction energy of the i’th quadrupole
with all the others is

Eiqq =
∑
j 
=i

YQ2

16πR2
ij
cos

(
2θi + 2θj

)
(21)

Substituting the quadrupoles locations we find

Eiqq = YQ2

16π l2q

∞∑
j=−∞

cos
(
2θi + 2θj

)
(i − j)2

(22)

We will use now all the results above for the calculation of the slope of the energy per
unit length, vs. quadrupoles density.

We have k quadrupoles in the considered domain. Therefore the elastic energy stored
in the domain is

EL =
k∑

i=1

ESelf + Eipq + EiShear + Eiqq (23)
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The total energy stored in the system is Etot = L∞
L · EL, where L∞ is the size of the system

which goes to infinity. The energy per unit length is therefore

Etot
L∞

= k
L

· YQ2

16πa2

+ PQY
2πL

k∑
i=1

(
f (α,β) cos 2θi + g(α,β) sin 2θi

)

− YQγ
L

1
L

k∑
i=1

sin 2θi +
k∑

i=1

Eiqq. (24)

Using the following abbreviation

〈. . . 〉 = 1
k

k∑
i=1

(25)

the above equation reads

Etot
L∞

= k
L

· YQ2

16πa2

+ PQY
2πL

k
(
f (α,β) 〈cos 2θi〉 + g(α,β) 〈sin 2θi〉

)
− YQγ k

L
〈sin 2θi〉 + 1

L

k∑
i=1

Eiqq. (26)

The last term in this expression is

1
L

k∑
i=1

Eiqq = k
L

· YQ2

16π l2p

〈 ∞∑
j=−∞

cos
(
2θi + 2θj

)
(i − j)2

〉

= YQ2

16π
ρ3q

〈 ∞∑
j=−∞

cos
(
2θi + 2θj

)
(i − j)2

〉
(27)

Since this term scales like ρ3q it does not contribute to the slope at ρq = 0. Therefore, the
first three terms in Etot

L∞ , which are linear in ρq, are the only relevant terms for this problem.

(
∂

∂ρq

Etot
L∞

)
ρq=0

= YQ2

16πa2

+ PQY
2π

(
f (α,β) 〈cos 2θi〉 + g(α,β) 〈sin 2θi〉

)
− YQγ 〈sin 2θi〉 . (28)

Defining

γc ≡ Q
16πa2

1
〈sin 2θ〉 + f (α,β)

P
2π

〈cos 2θ〉
〈sin 2θ〉 + g(α,β)

P
2π

(29)
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we get
(
∂

∂ρq

Etot
L∞

)
ρq=0

=
(

YQ2

16πa2
+ PQY

2π
(
f (α,β) 〈cos 2θi〉

+ g(α,β) 〈sin 2θi〉
))×

(
1 − γ

γc

)
. (30)

This is the main result of this section. We will now explain its implications for the
problem at hand.

The defects magnitude P has the dimensions of squared length. We therefore define the
dimensionless parameter η = P

l2p
as the dilution of the isotropic defects.

Start with the limit η → 0 where there are no isotropic defects. This limit is achieved
equivalently using P → 0 or lp → ∞. In this limit

γc ≡ Q
16πa2

1
〈sin 2θ〉 . (31)

In the absence of isotropic defects the energy is minimised for θi = π/4, hence

γc ≡ Q
16πa2

, (32)

which is consistent with the result of Ref. [21].
Next we consider the limit of small nonzero dilution |η| � 1. In this limit the energy

minimising orientations θi deviate slightly from π/4. We find

sin 2θi ≈ 1 − η2δ2i , (33)

cos 2θi ≈ −ηδi . (34)

Expanding γc in powers of η we find

γc = γ 0
c + g̃(α,β)− 2f̃ (α,β) 〈δi〉

2π
η + O(η2) (35)

This shows that the critical value of the external shear may increase or decrease. We now
explain the relevance of these findings to the increase in the toughness of the material.

In the presented set-up, α and β are determined by energy minimisation, which in turn
determine f̃ , g̃ . The functions f and g diverge for values of α and β that correspond to the
locations of the isotropic defects. Since these defects have a size, the divergence of f and
g has a natural cutoff. In fact, the isotropic defects are randomly distributed rather than
forming an ordered array. An effective way of taking this into account is to take α and β to
be random functions of the quadrupole positions – describing the random location of each
quadrupole with respect to the isotropic defects structure. In this case, the slope that we
calculated is also position dependent – that is adding a single quadrupole at some position
may be very expensive energetically, while for another position it can reduce the energy.
Accordingly, while some values of α and β encourage the formation of quadrupoles, other



1414 H. G. E. HENTSCHEL ET AL.

Figure 10. (colour online) Energy density as a function of quadrupole density. The yellow continuous line
corresponds to (α,β) = (0.85, 0.15). The blue dashed line is for (α,β) = (0.15, 0.5). The green dashed
dotted line is for (α,β) = (0.15, 0.15). The parameters used for this plot are: P/lp2 = −0.01,Q = 0.158.
The external shear strain is the yield strain corresponding to P = 0, γ = Q/(16πa2).

values suppress it. In Figure 10 we plot the energy density as a function of quadrupole
density for different values of α and β .

In order to prevent the formation of a macroscopic shear band, it is enough to suppress
the formation of quadrupoles at some region. This will prevent the formation of a system-
spanning array of quadrupoles. The fact that the slope for the energy associated with the
formation of quadrupoles become positive at some regions shows that a random distribu-
tion of isotropic defects prevent the formation of system-spanning array of quadrupoles.

We therefore predict that a random distribution of isotropic defects allow for the
formation of finite linear arrays of quadrupoles, whose lengths are determined by the
density and magnitudes of the isotropic defects, and by the magnitude of the external
shear. For large enough, but finite, external shear the mean length of a linear array of
quadrupoles will reach the system size and a system spanning shear-band will form.

It is now left to show that by increasing η the slope of the energy density vs. quadrupole
density, increases. In Figure 11, we plot the energy density as a function of the quadrupole
density for several values of η.

Finally, we want to find quantitatively how the toughness of the material is improved
by increasing η. In Figure 12, we plot the percentage change of yield strain, as a function
of η. We see that for small values of η the effect is linear in η. For these small values of η
we can get an increase of 60% in yield strain. These results depend also on the core size of
the isotropic defects. We chose (α,β) to be as close as possible to one isotropic defect. For
smaller cutoffs, the increase in yield strain will be larger. In the discussion section, we will
explain that for much larger values of η the effect reverses and finally disappears.

In summary, we showed that the presence of isotropic defects may encourage or
discourage locally the formation of quadrupoles. Since a shear-band requires the formation
of a system spanning array of quadrupoles, it is enough to focus on the neighbourhoods
in which quadrupole formation is suppressed. The formation of a system spanning linear
array of quadrupoles will always be frustrated in regions that are close to an isotropic
defect that happen to increase the interaction energy. A random distribution of isotropic
defects will result in regions for which the slope of the energy density becomes positive
and large. For a dilute distribution of isotropic defects the slope of the energy density may
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Figure 11. (colour online) Energy density as a function of quadrupoles density for several values of η,
and for (α,β) = (0.15, 0.85). All parameters are fixed. The external shear corresponds to the yield strain
for η = 0. Increasing |η| result with a larger slope, hence there are regions for which the formation of
quadrupoles is energetically unfavourable.

Figure 12. (colour online) The percentage change in yield strain atρq = 0, for several values ofη = P/l2p .
For η = 0 there is no change in yield strain.

increase up to 60%, preventing the formation of system-spanning arrays of quadrupoles.
The mechanism described here is independent of the sign of the charge of the isotropic
defects. The upshot of this discussion is that we expect to find in such materials ‘nano-
shearband’ whose lengths are determined by the isotropic defects distribution, and by the
external shear γ .

4. Estimating the length of arrested shear bands

In this section, we examine the consequences of having a percentage c of microalloying
particles in the amorphous material. Let us assume that each such particle organises a
patch around it involving n ∼ O(102) other particles of the surrounding material. Then a
fraction f of the material where

f = nc , (36)
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will consist of such patches. As at higher concentrations patches can overlap, the associated
volume fraction of organised material φ will be

φ = 1 − e−f . (37)

It is likely that the effect of the microalloying elements would be at its maximum when
the patches begin to percolate and span the system. By ‘percolation’ here we assume the
universality class of two-dimensional continuum percolation with circular inclusions. In
this class the critical value for percolation is φc ≈ 0.67 and fc ≈ 1.13 [26]. This agrees with
the order of magnitude of cc ≈ 1% which is a commonly quoted efficacious percentage for
microalloying particles. For higher concentrations the effect of the microalloying particles
can no longer be considered as ‘defects’. Their surrounding start to become the whole
material, and our discussion above stops being relevant.

Let us first consider c � cc . In this regime the typical distance between microalloying
particles and plastic quadrupoles is ξ ,

ξ = c−1/2λ , (38)

where λ is the typical interatomic distance. In comparison, the radius of a single patch is
about aiso ≈ √

nλ ≈ 10λ. Thus at very low values of c, ξ � aiso.
At this point, consider such a density of � = 0 defects and a strained system that

is attempting to create a shear band by aligning quadrupoles along a single line. With
random distribution of the defects we expect a typical distance to the line of defects to be
of the order of ξ . Taking into account the perturbation effect of the � = 0 defect on the
shear banding instability discussed above, we can expect that no nano shear-bandwill form
longer than a length of the order of ξ . With the numbers considered above we expect the
nano shear-bands to have a length of the order of 150–500Å. We note that this prediction
can be put to direct experimental test by changing c and measuring the observed length of
micro shear bands in the material.

With increasing the percentage c of microalloying particles, one expects that all the
material parameters will change, including density, conductivities, the elastic moduli and
the yield stress. Though an exact calculation of the dependence of all these material
parameters on c is a complex problem, one can make a simple mean field estimate by
applying the rule of mixtures to the particular material property of interest. For example,
let us consider the shear modulus μ and its dependence on c in a block of material under
uniaxial tension σ . We will need to specify the shear modulus of the background material
in the absence of microalloying to be μm and the shear modulus of the � = 0 inclusions
to be μi (naturally, depending on the material involved, μi > μm or μi < μm). Also as
the stress is homogenous we expect σm = σi = σ . As the total strain in the material is
ε = φεi + (1 − φ)εm we find

μ(c) = 1
(1 − e−nc)/μi + e−nc/μm

. (39)

Similar arguments can be made for thermal and electrical conductivities. A particular
simple case is the mass density ρ = φρi + (1 − ρ)ρm or
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ρ(c) = (1 − e−nc)ρi + e−ncρm. (40)

Such mean-field arguments are valid for c < cc where disconnected clusters of inclusions
can be expected to exist. The size of these patches diverge as ∼ (cc − c)−ν and above the
percolation transitionmacroscopic networks of patches can be expected to exist which will
fundamentally change the material properties of the microalloyed sample.

5. Discussion

We have used the previously obtained understanding of the fundamental plastic instability
that leads to the appearance of shear-bands in amorphous solids to shed light on why
and to what extent the addition of a minute concentration of foreign atoms can defer
this instability and improve the toughness of the material. The mechanism is simple; in
the absence of microalloying elements the shear band is formed by a system spanning
line of Eshelby-like quadrupolar displacement fields that combine together to form a
shear-band. To form a displacement field that is a shear-band the quadrupoles must have a
uniformand identical orientation. Isotropic defects interactwith the incipient quadrupoles,
forcing them to turn their orientation to minimise the interaction energy. This results in a
perturbation of the perfect ‘in phase’ ordering of the quadrupoles that is necessary for the
creation of the shear-band. This perturbation can be overcome by increasing the external
shear strain whose effect is to reorganise the quadrupoles to be in phase. This is precisely
the proposed explanation to the data shown in Figure 1.

The mechanism proposed offers also predictions on the non-spanning nano shear-
bands that can be observed in the strained materials, and their dependence on the concen-
tration of the microalloying elements. These predictions are easy to check experimentally
and we hope that such measurements would be achieved soon.
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Appendix 1. The numerical protocol
In our AQS numerical simulations we use a 50–50 binary Lennard-Jones mixture to simulate the
shear localisation discussed in this work. The potential energy for a pair of particles labeled i and j
has the form

Uij(rij) = 4εij
[(σij

rij

)12 −
(σij
rij

)6 + A0

+ A1

( rij
σij

)
+ A2

( rij
σij

)2]
, (A1)

where the parameters A0, A1 and A2 are added to smooth the potential at a scaled cut-off of
r/σ = 2.5 (up to the second derivative). The parameters σAA, σBB and σAB were chosen to be
2 sin (π/10), 2 sin (π/5) and 1 respectively and εAA = εBB = 0.5, εAB = 1. The particle masses were
taken to be equal. The samples were prepared using high-temperature equilibration followed by a
quench to zero temperature (T = 0.001). For shearing, the usual athermal-quasistatic shear protocol
was followed where each step comprises of an affine shift followed by an non-affine displacement
using conjugate gradient minimisation. Explicitly, in two dimensions the affine state is achieved by
moving the coordinates of every particle i according to

xi → xi + δγ yi
yi → yi. (A2)

In an amorphous solid this affine step results in throwing all the forces on the particles out of
balance. Accordingly, to regain mechanical equilibrium, one needs to execute a non-affine step,
which is achieved by gradient energy minimisation. Once executed, the next step of straining is
done. Note that in such quasi-static protocols there strain rate is zero.

The simulations were conducted in two dimensions (2d) and employed Lees-Edwards periodic
boundary conditions. Samples were generated with quench rates ranging from 3.2 × 10−6 to 3.2 ×
10−2 (in LJ units), and were strained to greater than 100%. Simulations were performed on system-
sizes ranging from 5000 to 20,000 particles with a fixed density of ρ = 0.976 (in LJ units). The
simulations reported in the paper have 10,000 particles and a quench-rate of 6.4 × 10−6 (in LJ
units).
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