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The stressed state of flattened thin elastic sheet, as well as that of translationally symmetric 3D
material - are effectively 2D problems. This paper study equilibrium state-of-stress in metrically-
incompatible 2D elastic materials. The solution is represented by a scalar stress function, generalizing
the Airy stress function, which is determined by geometric compatibility conditions. We develop a
perturbative approximation method for solving this stress function, valid for any constitutive relation.
We apply the method for the case of a Hookean solid to solve prototypical examples in which the
classical Airy approach is either inaccurate or inapplicable. Results are shown to agree well with
numerical results.

I. INTRODUCTION

A classical problem of practical importance in elastic-
ity is finding the equilibrium state of an elastic body.
Stressed states usually arise as a response to external
forcing. Another class of settings in which stresses are
present at equilibrium is when the intrinsic geometry of
the material is incompatible with the ambient Euclidean
space. This incompatible geometric structure is usually
induced by inelastic deformations. Stresses present in
the absence of external constraints are called residual
stresses. Residual stress is common, for example, in
systems subject to thermal gradients, in bodies with de-
fects [1], and in natural tissues that undergo non-uniform
growth [2].

It was recently shown that defective materials [], as
well as growing natural tissues[], can be modeled within
a geometric formulation of elasticity. In this formulation
the local rest distances between material elements are
described by a reference metric tensor ḡ. This geometric
formulation of elasticity, which is suitable for the de-
scription of large inealstic deformations, is also relevant
for the description of Non-Euclidean Plates (NEP). NEP
is a thin elastic sheet that is uniform along its thickness,
and described using a 2D reference metric that is not
necessarily euclidean. The stressed state of 3D materials
that are symmetric under translations along an axis can
be viewed as the state of a very thick NEP, or alterna-
tively, as the state of a flattened thin NEP. Such symmet-
ric materials can be effectively described as a NEP with
a 2D reference metric.

The stressed state of defective materials, as well as that
of pre-buckled NEP of finite thickness, are of practical
importance in the study of material’s properties. The ge-
ometric formulation of elasticity has for advantage that
it is formulated using entities of physical and geometric

∗ michael.moshe@mail.huji.ac.il
† erans@mail.huji.ac.il

significance (e.g., curvatures and parallel transport). A
disadvantage of this approach is its strong nonlinearity,
which makes it hard to apply to practical applications.

For example, the exact elastic equilibrium equation
of thick/flattened NEP was derived [3], but no general
analytical methods were developed for solving it.

Common approaches to residually-stressed bodies,
which are limited to small inelastic deformations (or in
mathematical language, to weak geometric incompati-
bility) are not suitable to many of the cases of interest
of NEPs. For example, growing natural tissues and ac-
tive materials (e.g., [4, 5]) are two classes of systems that
may involve large inelastic deformations. In order to
elucidate the complex patterns generated by those sys-
tems one has to rely on models that go beyond a weak
incompatibility regime.

In this work we develop an approximation method
for solving the equilibrium plane-stress state of non-
Euclidean plates. We show that the solution for the stress
can be represented in terms of a scalar function, which
we call the incompatible stress function (ISF), which gen-
eralizes the Airy stress function used in linear elasticity
[1]. The representation of the stress by an ISF is an an-
alytical property that does not rely on any approxima-
tion, and capture both nonlinearity and incompatibility.
Under a specified constitutive law, one obtains a repre-
sentation for the actual metric at equilibrium in terms
of the ISF. Geometric compatibility conditions satisfied
by the actual metric, along with boundary conditions,
determine the ISF.

We consider examples that include both simply-
connected and multiply-connected domains. In the lat-
ter case, the geometric compatibility conditions provide
in a natural way additional constraints, which have no
immediate counterpart in the classical Airy stress func-
tion formulation.

To find the ISF we use a perturbative approach in
which the small (formal) parameter is a measure of ge-
ometric incompatibility. To lowest order one obtained
a linear fourth-order equation for the ISF, which can be
viewed as a geometric generalization of the biharmonic
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equation satisfied by the Airy stress function. Higher-
order corrections can be obtained systematically; in this
paper we demonstrate how to derive second-order cor-
rections.

We apply our method on two prototypical examples.
The first example models a thick disc with a single discli-
nation line parallel to the z axis - a problem that could
also be solved using the Airy approach. The reference
metric of this geometry prescribes a delta-function sin-
gularity of reference Gaussian curvature. The thin plate
limit of such discs was studied in [6]. The second exam-
ple models a material with uniformly constant reference
Gaussian curvature - positive or negative. The plane
stress states of both examples were presented and solved
numerically in [7] in the context of non-Euclidean thin
plates embedded in the Euclidean plane. According to
this interpretation, our first example models a flattened
cone, while the second one models a flattened sphere (or
a flattened surface of constant negative Gaussian curva-
ture) Fig. 1

FIG. 1: An illustration of the plane stress state of a NEP,
having a reference metric of constant positive Gaussian

curvature.

Our results are compared to the numerical solutions
of the fully nonlinear problem presented in [7]. For the
problem of a single disclination line we also compare
our results to that obtained by the classical Airy stress
approach.

Finally, in addition to its relevance for the mechanics of
NEP (such as for calculation of their buckling threshold
), the formalism is relevant for other cases of 3D axially
symmetric systems, i.e., systems whose state-of-stress is
essentially two-dimensional. These include problems of
rods that are residually stressed due to growth [], or due
to thermal gradients.

II. INCOMPATIBLE ELASTICITY

In certain geometric formulation of elasticity theory,
an elastic body is modeled as a Riemannian manifold B
equipped with a reference metric ḡ [3], which describes
local rest distances between adjacent material elements.
An elastic body is commonly assumed stress-free in the
absence of external constraints. This statement is equiv-
alent to saying that the reference metric ḡ is Euclidean.
In many cases of interest, however, the reference met-
ric is non-Euclidean, leading to a theory of incompatible
elasticity. Incompatible elasticity was developed in the
1950s in the context of crystalline defects; it has attracted
renewed interest in recent years in other contexts, such

as thermo-elasticity [8], growth dynamics [5, 9], differ-
ential swelling [4, 10–14], and macro-molecules self as-
sembly [15]. It should be noted that in general, material
manifolds may be endowed with properties other than
just a metric, which is a particular case of a section of a
fiber bundle [16]. The present work assumes a homo-
geneous and isotropic medium, fully described by its
metric properties.

A configuration of an elastic body is an embedding of
B in the ambient Euclidean space (the space manifold
S). Every configuration induces on B a metric, g, which
quantifies actual distances between adjacent material el-
ements (g is the pullback of the Euclidean metric). The
elastic strain tensor is the discrepancy between the actual
metric and the reference metric,

u =
1
2

(g − ḡ) . (1)

Note that this definition of the strain tensor is purely
geometric and involves no linearization.

The elasto-static model is fully determined by a con-
stitutive law, or in the case of a hyper-elastic material, by
an energy functional. This energy functional is an addi-
tive measure of local strains. In first-grade elasticity, the
energy density is assumed to only depend on the first
derivative of the configuration. Assuming frame indif-
ference, the energy functional can be written in terms of
the actual metric,

E =

∫
W(g; ḡ) dVolḡ , (2)

where dVolḡ is the Riemannian volume element, and W is
a non-negative energy density (viewed here as a function
of the section of metric tensors) that vanishes at x if and
only if g(x) = ḡ(x). Incompatibility manifests in that g
cannot be equal to ḡ everywhere simultaneously.

It can be shown (in a way similar to [17]) that the con-
figuration that minimizes the energy satisfies the equi-
librium equations,

∇̄µσ
µν +

(
Γναβ − Γ̄ναβ

)
σαβ = 0, (3)

where

σµν =
∂W(g; ḡ)
∂εµν

= 2
∂W(g; ḡ)
∂gµν

, (4)

along with the boundary conditions

nασαβ = tβ, (5)

where tβ is a boundary traction, and nα is the unit vector
normal to the boundaries. Here Γ and Γ̄ are the Christof-
fel symbols associated with g and ḡ respectively, and ∇̄
is the covariant derivative with respect to ḡ, namely,

∇̄µσ
µν = ∂µσ

µν + Γ̄
µ
µβσ

βν + Γ̄νµβσ
βµ.
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Equation (3) is a momentum conservation equation,
and as such is independent of the specific constitutive
law. The constitutive law enters in the relation (4) be-
tween the stress and the configuration. The equilibrium
equations (3), together with the boundary conditions (5)
and the constitutive law (4) form a closed system of equa-
tions.

III. THE INCOMPATIBLE STRESS FUNCTION

The dependent variable whose solution we seek is con-
ventionally taken to be the configuration. In this section
we adopt a different approach, and express the elastic
problem as a system of equations in which the unknown
is the actual metric g. We focus on two-dimensional
problems. Note that one could also consider cases in
which the ambient space is non-Euclidean, e.g., the sur-
face of a sphere. In this paper we only consider em-
beddings in Euclidean plane, in which case the elastic
problem is known as the plane-stress problem. The case
of a non-Euclidean ambient space will be treated in a
subsequent publication.

A well-known fact is that any two-dimensional
divergence-free tensor field can be expressed as the ten-
sorial action of a curl on the gradient of a scalar function.
Here we generalize this property to the generalized Rie-
mannian setting. In Appendix A we show that any stress
field solving (3) can be represented as

σµν =

(
1

√
det ḡ

εµα
) (

1
√

det g
ενβ

)
∇α∇̄βψ (6)

where ε̃ is the Levi-Civita anti-symmetric symbol, and
∇̄ and ∇ are the covariant derivative with respect to ḡ
and g, respectively. We call the scalar function ψ the
incompatible stress function (ISF).

The ISF is a generalization of the Airy stress function
for the case of a general Riemannian metric. Note, how-
ever, that (6) involves no approximation, and it solves
the fully nonlinear equilibrium equation (3).

A constitutive relation establishes a relation between
the actual metric g (which determines the strain) and the
stress σ

u = F(σ), (7)

where F specify the constitutive relation. In view of (6),
a constitutive relation determines a relation between the
ISF and g

g = ḡ + 2F
(

1
√
|ḡ| |g|

εµαενβ∇α∇βψ

)
. (8)

Since g is an actual metric that corresponds to a pla-
nar configuration, it must be Euclidean, and we obtain
a geometric constraint on the ISF. We have thus reduced
the full elastic problem into that of finding an ISF cor-
responding to a Euclidean g. Thus, the elastic problem

is

Find ψ such that g given by (8) is Euclidean.

This scheme captures both elastic nonlinearity and ge-
ometric incompatibility. In addition, it is valid for any
constitutive relation, which only affects the relation be-
tween ψ and g.

A. HOOKEAN SOLIDS

In this paper we assume a Hookean constitutive law
(though we could choose other ones),

σµν = Aµναβuαβ, (9)

where

Aαβγδ =
Y

1 + ν

(
ν

1 − ν
ḡαβḡγδ + ḡαγḡβδ

)
is the homogeneous and isotropic elastic tensor, Y is
Young’s modulus, and ν is the Poisson ratio. Invert-
ing this expression and using (1), we express the actual
metric in terms of the stress,

gµν = ḡµν + 2Aµναβσ
αβ,

where we defined

Aαβγδ =
1 + ν

Y

(
−

ν
1 + ν

ḡαβḡγδ + ḡαγḡβδ

)
.

Substitution of (6) results in an expression for the actual
metric in terms of the elastic constants, the reference
metric, and the ISF,

gµν = ḡµν +
2Aµναβ

√
det ḡ

√
det g

εαγεβκ∇γ∇̄κψ. (10)

This expression for g is implicit as g appears on the right-
hand side both in the denominator, as in the covariant
derivative ∇which depends nonlinearly on g.

B. Geometric compatibility conditions

In the previous section we obtained an expression for
the unknown actual metric g in terms of the ISF. This
expression embodies both the equilibrium condition (3)
and the constitutive law (9). It is then not clear how to
determine the ISF.

The answer is that not every metric g is acceptable.
Since the body manifold is embedded in Euclidean
space, the actual metric must be Euclidean (the actual
metric is by definition the metric g that makes the map
f : (B, g)→ (S,Eucl.) an isometry). In two dimensions, a
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necessary condition for g to be Euclidean is the vanishing
of the Gaussian curvature,

KG = 0, (11)

which by Gauss’ theorem, only depends on the met-
ric and not on the embedding. If the body manifold
is simply-connected, then this condition is also suffi-
cient. In many cases, however, one may be interested
in other topologies, for example, an annulus. In such
cases, a vanishing Gaussian curvature does not guaran-
tee a (globally) Euclidean geometry. In a recent work
[18] we showed that an annular manifold can be iso-
metrically embedded in the Euclidean plane if and only
if its Gaussian curvature vanishes, and in addition its
monodromy is trivial. The monodromy is a map from the
fundamental group of the manifold to a space of affine
transformations,

x→ Ax + b

where A is a linear transformation and b is a constant
vector. The monodromy is trivial if its image contains
only the identity, i.e, A = I and b = 0.

The condition A = I is equivalent to∮
κg dl = −2π, (12)

and the condition b = 0 is equivalent to∮
Π

p
γ(t)

(
γ̇ (t)

)
dt = 0, (13)

where the integrals are along any closed curve with
winding number 1. Here, κg is the geodesic curvature
along the curve and Π

p
q is the parallel transport operator

from point q to p. The latter is well-defined on locally
Euclidean manifolds when A = I (see [18] for details).
The physical interpretation of these conditions is that
both the Frank and the burgers vectors associated with
the intrinsic geometry of the material are vanished for
every closed curve. The local equation (11), along with
the conditions (12) and (13), are compatibility conditions
for g to be an actual metric of a surface embedded in the
Euclidean plane.

Thus, the plane-stress problem can be reformulated
as follows: find a metric g of the form (10), satisfying
the compatibility conditions (11), (12) and (13) and the
boundary conditions (5).

IV. APPROXIMATION METHODS

The plane-stress problem, as reformulated geometri-
cally in the previous section, is still highly nonlinear and
not generally solvable by analytical means. For the ge-
ometric approach to be of practical interest, approxima-
tion methods must be developed. The first step of any

systematic perturbative approach is the identification of
small parameters.

Since our problem results from a geometric incom-
patibility, the expansion parameter is expected to quan-
tify the extent of geometric incompatibility. When g is
smooth, every open set of sufficiently small diameter can
be embedded in Euclidean space “almost isometrically”.
Physically, this means that a small enough sample has
a configuration that is almost strain-free. This suggest
that for the case of a smooth reference metric, a natu-
ral expansion parameter is a product of the size of the
body and a characteristic Riemannian curvature. Gen-
erally, the quantification of geometric incompatibility is
problem-dependent.

Suppose that η is a small dimensionless parameter that
measures the amount of geometric incompatibility. We
expand the ISF in powers of η,

ψ = ηψ(1) + η2ψ(2) + O(η3)

Equation (8) induces a similar expansion for g,

g = ḡ + ηg(1) + η2g(2) + O(η3)

which in turn induces an expansion for the actual Gaus-
sian curvature

KG = K̄G + ηK(1) + η2K(2) + O(η3)

For the special case of a Hookean solid, to leading
order, we may replace g and ∇ on the right hand side of
(10) by ḡ and ∇̄, obtaining

gµν = ḡµν +
2η

det ḡ
Aµναβε

αγεβκ∇̄γ∇̄κψ
(1) + O(η2). (14)

Having an explicit expression for a first-order approx-
imation for the actual metric, we turn to impose the
geometric compatibility conditions. We start with the
condition (11) on the curvature. The Gaussian curvature
is

KG =
1
2
gαγgβδRαβγδ,

where Rαβγδ is the Riemann curvature tensor,

Rαβγδ =
1
2

(
∂βγgαδ + ∂αδgβγ − ∂αγgβδ − ∂βδgαγ

)
+

gµν

(
Γ
µ
βγΓ

ν
αδ − Γ

µ
βδΓ

ν
αγ

)
.

Since expression (14) for g is accurate to first-order in
η, we may impose KG = 0 only to that order. This results
in a PDE for the first-order term of the ISF ψ(1),

−
1
Y

∆̄∆̄ψ(1)
−

2K̄G

Y
∆̄ψ(1)+K̄G−

1 + νp

Y
ḡµν

(
∂µK̄G

) (
∂νψ

(1)
)

= 0.
(15)
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Here K̄G is the Gaussian curvature associated with the
reference metric ḡ, and ∆̄ is the Laplace-Beltrami opera-
tor with respect to ḡ,

∆̄ f =
1
√
ḡ
∂µ

(√
ḡ ḡµν∂ν f

)
.

Equation (15) together with the boundary conditions and
the geometric compatibility conditions completely de-
fine the solution ψ(1), up to immaterial gauge transfor-
mations.

In classical “compatible” elasticity it is assumed that
K̄G = 0. In this case (15) reduces, as expected, to the bi-
harmonic equation, which is the equation satisfied by the
classical Airy stress function. Moreover, in compatible
linear elasticity, the compatibility condition are imposed
on the linearized strain

∂2ū11

∂x2
2

− 2
∂2ū12

∂x1∂x2
+
∂2ū22

∂x2
1

= 0, (16)

which is a linearized approximation to the condition
KG = 0 (see Appendix B). In addition to being free of
geometric linearization, our approach yields two addi-
tional geometric constraints. The condition of trivial
monodromy has no immediate analog in the classical
approach. The absence of geometric compatibility con-
ditions is noticeable in problems involving a non-trivial
topology, where the constants of integration are usually
determined by heuristic considerations. For example
(see [19]), in disclinations or dislocations, the boundary
conditions alone do not determine the solution uniquely.
Additional constraints on the displacement field are of-
ten imposed arbitrarily. In the current approach, the
equations are always fully determined.

A. Iterative perturbation method

The geometric approach using the ISF allows a pertur-
bative approximation. Once we have solved the equa-
tion for ψ(n), we obtain a linear equation for ψ(n+1). In
this section we derive the second-order correction.

Going back to (10), the O(η2) equation comprises three
terms: (i) A term linear in ψ(2). (ii) The first-order cor-
rection for 1/

√
det g. (iii) The first-order correction for

connection coefficients in the covariant derivatives. The
last two terms depend on the leading-order solution,
ψ(1).

The detailed calculations are given in Appendix C. We
express the actual metric as follows,

gµν = ḡµν + g(1)
µν + g(2)

µν + O(η3), (17)

where

g
(1)
ρσ =

2
det ḡ

Aρσαβε
αµεβν∇̄µ∇̄νψ

(1),

and

g
(2)
ρσ =

2
det ḡ

Aρσαβε
αµεβν∇̄µ∇̄νψ

(2)

−
1

det ḡ2 Tr
(
ḡ adj g(1)

)
Aρσαβε

αµεβν∇̄µ∇̄νψ
(1)

−
2

det ḡ
Aρσαβε

αµεβνδΓγµν∂γψ
(1),

(18)

with

δΓ
µ
νρ =

(
cµβḡβγΓ̄

γ
νρ + ḡµβξβνρ

)
, (19)

ξαβγ =
1
2

(
∂γg

(1)
αβ + ∂βg

(1)
αγ − ∂αg

(1)
βγ

)
,

and

cµν =
1

det ḡ

((
adj g(1)

)µν
− Tr

(
ḡ adj g(1)

)
ḡµν

)
.

For a matrix A, adj A denotes its adjugate, which is the
transpose of the cofactor matrix.

Having an expression (17) for the actual metric, we
write down the geometric compatibility condition (11)
up to second order, obtaining an equation for ψ(2). The
The equation (11), together with (12) and (13) determine
the elastic solution for ψ(2).

V. EXAMPLES

A. Disclinations

As a first example we solve the classical problem of a
wedge disclination. Classically, a disclination is a defect
created by the removal/insertion of a wedge (see Fig. 2).
However, a disclination geometry can also be formed by
differential growth that induces a volume expansion fac-
tor ϕ(ρ, θ) = α logρ, where (ρ, θ) are polar coordinates.
The resulting reference metric is [? ]

ḡ(ρ, θ) = ρ2α

(
1 0
0 ρ2

)
. (20)

By rescaling the radial coordinate,

r =
ρ1+α

1 + α

the reference metric takes the more familiar form

ḡ(r, θ) =

(
1 0
0 q2r2

)
, (21)

where q = 1 + α. We assume an annulus of inner ra-
dius rin and outer radius rout, and impose free boundary
conditions.
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The case q = 1 corresponds to a Euclidean annulus.
For q , 1, the reference Gaussian curvature K̄G is also
zero everywhere, i.e., the reference metric is locally-
Euclidean. Indeed, a disclination has a cone geometry,
with a cone angle

∆θ = −2πα.

FIG. 2: An illustration of the geometry and the stressed
state of a disclination. The stressed state of a 3D

material containing a disclination on a cross-section
(left panel) is identical to that of a flattened cone (right

panel).

The intrinsic geometry of a discliniation can be re-
vealed by allowing a very thin slice of the material to
buckle in 3D space. The isometric embedding of (21) is a
cone. Therefore the plane-stress state of a material with
a disclination-line is equivalent to the stress-state of a
flattened cone Fig. 2.

1. First-order approximation

Substituting the reference metric (21) and K̄G = 0 into
equation (15) we obtain the biharmonic equation,

∆̄∆̄ψ(1) = 0,

where ∆̄ is the Laplace-Beltrami operator. The general
solution is the well-known Michell solution [20]. In the
case of an axially-symmetric problem, the solution is
independent of θ. The general solution is

ψ(1) (r, θ) = A log r +
Br2

2
+

1
2

Cr2
(
log r −

1
2

)
. (22)

where A, B, and C are constants of integrations.
Classically, at this point one obtain expression for the

displacement field and require non zero frank vector.
This procedure requires additional linearities and de-
scribes extrinsic disclination. Instead, next we directly
impose geometric compatibility conditions that has no
analogue in the classical method.

The geodesic curvature of a circular loop is

κg =

√
grrgθθ − g

2
rθ

g
3/2
θθ

Γr
θθ.

Substituting (22) into (12) we find the linear component
of the monodromy to leading order, obtain a first con-
straint ∮

κg
√
gθθdθ = −

4πζCq
Y

− 2πq = −2π,

hence,

C = −
(q − 1)Y

2q
.

The vanishing of the translational component of the
monodromy, (13), is automatically satisfied by any
axially-symmetric solution. To determine the remaining
constants A and B we need to impose boundary condi-
tions. By (6), the radial stress component is given by

σrr =
1

q2r2∇θ∇θψ
(1).

To first-order in η,

σrr = −
1

q2r2 Γ̄r
θθ

∂ψ(1)

∂r
=

A
r2 + B +

(1 − q)Y
2q

log r.

Imposing free boundary conditions,

σrr
|rin= 0 and σrr

|rout= 0

we obtain,

A =
(1 − q)Y

2q
·

r2
inr2

out ln (rin/rout)

r2
in − r2

out

,

and

B =
(q − 1)Y

2q
·

r2
in ln (rin) − r2

out ln (rout)

r2
in − r2

out

.

To conclude, the stress components are

σr
r = ḡrµσ

µr =
(1 − q)Y

2q
r2

inr2
out

r2
in − r2

out

ln (rin/rout)
r2

+
(1 − q)Y

2q
r2

out ln (rout/r) − r2
in ln (rin/r)

r2
in − r2

out

,

and

σθθ = ḡθµσ
µθ =

(1 − q)Y
2q

(
1 −

r2
inr2

out

r2
in − r2

out

ln (rin/rout)
r2

)
+

(1 − q)Y
2q

(
r2

out ln (rout/r) − r2
in ln (rin/r)

r2
in − r2

out

)
.

In particular, these expressions identify 1 − q and 1 −
rin/rout as small parameters.
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In Fig. 3 we plot σr
r(r) for a disclination charge ∆θ =

2π/10 (or q = 0.9). Fig. 3(a) compares the exact nu-
merical solution σex (solid line), the Airy solution σAiry

(dashed red line) and our first-order approximation σ(1)
ISF

(dashed green line). To compare accuracies we plot in
Fig. 3(b) the normalized deviations from the exact solu-
tion, δσAiry ≡ (σAiry−σex)/max |σex| (dashed red line) and
δσISF ≡ (σ(1)

ISF − σex)/max |σex| (dashed green line). Our
first-order approximation is more accurate than the Airy
solution. A similar picture is oberved for the other stress
components.

FIG. 3: (a) σr
r as function of r for a disclination geometry

with parameter q = 0.9. We compare the exact solution
(solid blue line, obtained numerically), the linear Airy

solution (dashed red line) and our first-order
approximation (green dashed line). (b) Normalized

deviations from the exact solution. The red line shows
the deviation of the Airy solution and the green line

shows the deviation of our first-order approximation.
Both are normalized by the maximal value of the exact
solution. Figures (c) and (d) are analogous to figures (a)

and (b) but use our second-order approximation.

2. Second-order approximation

Having calculated ψ(1), we substitute it in (18) and im-
pose the geometric condition (11) up to second order.
This results in an equation for ψ(2). Given ψ(1), the Gaus-
sian curvature up to second order is given by

KG = −
1

4Y
∆̄∆̄ψ(2) (r) +

(q − 1)2(νp − 3)2

8q2r2

−

(q − 1)2(νp + 1)2r2
inr2

out ln
(

rin
rout

)
4q2r4

(
r2

in − r2
out

) .

The equation KG = 0 is solvable analytically. The con-
stants of integration are determined exactly as in the
first-order case.

Fig. 3(c) and (d) are analogous to Fig. 3(a) and (b),
except that we replaced the first-order approximation

σ(1) by the second-order approximation σ(2). Within the
resolution of the plot, our approximation is almost in-
distinguishable from the exact solution.

B. Constant reference Gaussian curvature

In this section we solve the stress-state of a transla-
tionally symmetric material whose effective 2D reference
metric has a constant Gaussian curvature. The com-
puted stress state is that of a flattened, or pre-buckled,
non-Euclidean disc whose reference metric determines
a constant (positive or negative) Gaussian curvature K̄G.
It is interesting to note that this solution provides the
stress state of a rod that undergoes thermal expansion
due to a spatially uniform heat source (see Appendix D).
The reference metric is given by:

ḡ =

1 0

0 1
K̄G

sin
(√

K̄Gr
)2

 , (23)

where (r, θ) are again polar coordinates and r ∈ [rin, rout].
Here too, we assume free boundary conditions. Similar
to the analogy between disclination and a flattened cone,
the stress-state in the current example is equivalent to
that of a flattened sphere Fig. 1.

Substituting (23) into (15) we obtain the following
equation for ψ(1),

−
1
Y

∆̄∆̄ψ(1)
−

2K̄G

Y
∆̄ψ(1) + K̄G = 0.

The general axially-symmetric solution is

ψ(1) (r) = −
A

2K̄G
cos

(√
K̄Gr

)
+

(
A

2K̄G
− C

)
tanh−1

(
cos

(√
K̄Gr

))
−

B
2K̄G

tanh−1
(
cos

(√
K̄Gr

))
cos

(√
K̄Gr

)
−

Y
4K̄G

ln
(
sin2

(√
K̄Gr

))
.

(24)

The σr
r component of the stress field is given by

σr
r =

1
2

B arctan
(
cos

(√
K̄Gr

))
cos

(√
K̄Gr

)
+ K̄GC

cot
(√

K̄Gr
)

sin
(√

K̄Gr
)

+
1
2

(
B − Y − A cos

(√
K̄Gr

))
cot

(√
Kr

)2
.

(25)

As in the previous example, the translational com-
ponent of the monodromy vanishes for any axially-
symmetric solution. The constants of integration are de-
termined by the geometric constraint (12) and the bound-
ary conditions. To assess the accuracy of our solution,
we compare it to [3], where the fully nonlinear problem
was solved numerically.
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In Fig. 4 we present results for rin = 0.1, rout = 1.1 and√
K̄G = 1/4. The agreement with the exact solution is

within fractions of a percent. As expected, increasing the
reference curvature results in a larger error. If needed,
second-order accuracy can be achieved using (18).

FIG. 4: (a) σr
r as a function of r for a surface of positive

constant reference Gaussian curvature. The parameters
are rin = 0.1, rout = 1.1 and

√
K̄G = 1/4. We compare the

exact solution (solid blue line, obtained numerically) to
our first-order approximation (red dashed line). (b)

Normalized deviations of our first-order approximation
from the exact solution. Figures (c) and (d) are

analogous to figures (a) and (b) for σθθ.

So far we treated the case of positive reference cur-
vature. The same solution can be used for the case of
a negative reference Gaussian curvature, as it is valid
for both negative and positive values of K̄G. In Fig. 5
we compare the first-order approximation for the hyper-
bolic case with the numerical solution obtained in [3]
for various values of K̄G. As in previous examples, the
agreement is excellent, and can be improved by taking
the second order solution for ψ(2).

FIG. 5: (a) σr
r and (b) σθθ as functions of r for a surface of

constant negative reference Gaussian curvature.
Comparison between our first-order approximation

(solid line) and the exact solution from [3] (dashed line).
The various curves are, top to bottom at the left hand

side, for K̄G = −1/Λ2 for Λ = (2, 2.5, 3, 3.5, 4).

VI. CONCLUDING REMARKS

The methods developed in this paper have a wide
range of applications, encompassing systems locally
characterized by a reference metric. For example, our
approach is relevant to the study of shaping via growth
in biological tissue. In this context, the reference met-
ric is prescribed by the underlying biological activity
(cell division and expansion). The feedback of mechan-
ical stresses on growth, recently suggested as a growth-
regulating mechanism [21], can be included naturally
within the formalism, by prescribing in addition a (slow)
evolution equation for the reference metric.

In addition, as shown in Appendix D, the reference
state of a material subjected to temperature gradients
can be also described using the reference metric, hence
thermoelastic effects can be easily integrated and cou-
pled to the intrinsic geometry of the elastic medium.

Other classes of systems to which this geometric ap-
proach can be applied are nematic-elastomers. It was
shown that given a reference metric, one can calculate
and design the appropriate director field that will induce
this metric (see [22]).

At least, it was recently shown that defects can be
defined as singular sources of incompatibility of the ref-
erence curvature. This definition, which appropriate for
both ordered and disordered materials, can now be used
together with the ISF method to study the mechanics of
defects in amorphous materials.
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Appendix A

Here we show that a stress field of the form (6) identi-
cally solve the equilibrium equation (3).

A useful identity is ∂µ 1
√
g

= − 1
√
g
Γµ where we denote

Γµ = Γλλµ. The completely anti-symmetric symbol of
Levi-Civita is denoted ε. It can, however, expressed as a
tensor with respect to the reference metric ḡ as

ε
µα
ḡ
≡

(
1
√
ḡ
εµα

)
.

Similarly, it can be expressed as a tensor with respect to
the actual metric g

ε
µα
g ≡

(
1
√
g
εµα

)
.
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We would like to solve the following set of equations

∇̄µσ
µν +

(
Γναβ − Γ̄ναβ

)
σαβ = 0.

Using the definition of ∇̄ν the equation can be rewritten
as

∇µσ
µν +

(
Γ̄λ − Γλ

)
σλν = 0. (A1)

This equation is a generalization of the classical equa-
tion Divσ = 0. A well known fact is that any two-
dimensional divergence-free tensor field can be ex-
pressed as the tensorial action of a curl on the gradient
of a scalar function. Generalizing this idea we represent
the solution of (A1) as

σµν = ε
µα
ḡ
ε
µα
g ∇α∇̄βψ (A2)

In order to verify that this representation of the stress
identically solve the equilibrium equation, we substitute
it into (A1),(

∇µε
νβ
g

)
ε
µα
ḡ
∇α∇βψ + ε

νβ
g

(
∇µε

µα
ḡ

)
∇α∇βψ

+ε
νβ
g ε

µα
ḡ
∇µ∇α∇βψ +

(
Γ̄λ − Γλ

)
σλν = 0.

Where we replaced ∇̄ with ∇, since it acts on a scalar
function and therefore equivalent to the partial deriva-
tive.

It can be shown by straight forward calculation that
the first term vanishes identically. Moreover, since the
actual metric is Euclidean, the covariant derivatives are
commutes, therefore the 3rd term vanishes as ∇µ∇α and
ε
µα
ḡ

are symmetric and anti-symmetric in α and µ.
The equation is now reduced to

ε
νβ
g

(
∇µε

µα
ḡ

)
∇α∇βψ +

(
Γ̄λ − Γλ

)
σλν = 0.

Calculation of ∇µε
µα
ḡ

yield

∇µε
µα
ḡ

= −Γ̄µε
µα
ḡ

+ Γµε
µα
ḡ

+ Γαµλε
µλ
ḡ

since the connection is symmetric in its two lower indices
the last term vanishes. Putting it back in the equation
we get

−Γ̄µε
µα
ḡ
ε
νβ
g ∇α∇βψ + Γµε

µα
ḡ
ε
νβ
g ∇α∇βψ +

(
Γ̄λ − Γλ

)
σλν = 0

that is

−Γ̄µσ
µν + Γµσ

µν +
(
Γ̄λ − Γλ

)
σλν = 0

hence the equation is solved identically.

Appendix B

The geometric condition of plane stress KG = 0, is
claimed to generalize the classical compatibility condi-
tion on the linearized strain of compatible elasticity

∂2ū11

∂x2
2

− 2
∂2ū12

∂x1∂x2
+
∂2ū22

∂x2
1

= 0, (B1)

This claim can be verified according to the small strain
approximation used in linearized elasticity. We assume
the body is free from stresses when it does not subjected
to external stresses, hence we actually assume its refer-
ence metric is Euclidean. Therefore one can always chose
a parametrization (u, v) for which the reference metric is
of the form

ḡ =

(
1 0
0 1

)
Assuming small strains is equivalent to the assumption
of small deviation from the Euclidean metric. Therefore
one can write the actual metric as

g =

(
1 + δE (u, v) δF (u, v)
δF (u, v) 1 + δG (u, v)

)
Requiring KG = 0 up to first order in δ one finds

∂vvE(u, v) − 2∂uvF(u, v) + ∂uuG(u, v) = 0

Now remember that the strain is defined as u = 1
2 (g − ḡ)

and substitute the expressions for g in terms of the strain
one finds

∂vvūuu(u, v) − 2∂uvūuv + ∂uuūvv = 0

which is the classical compatibility condition.

Appendix C

Here we derive the second-order correction to the ISF.
We showed that the equilibrium solution for the actual

metric in the case of a Hooken constitutive relation can
be represented in terms of the ISF as follows (10)

gµν = ḡµν +
2Aµναβ

√
det ḡ

√
det g

εαγεβκ∇γ∇̄κψ.

In addition, we showed that to a first order in the formal
incompatibility parameter η we get

g
(1)
ρσ =

2
det ḡ

Aρσαβε
αµεβν∇̄µ∇̄νψ

(1),
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where

ψ = ψ(1) + ψ(2) + O
(
η
)3 ,

Going back to (10), the O(η2) equation comprises three
terms: (i) A term linear in ψ(2). (ii) The first-order cor-
rection for 1/

√
det g. (iii) The first-order correction for

connection coefficients in the covariant derivatives. The
last two terms depend on the leading-order solution,
ψ(1).

Here we present the calculation of each term in the
2nd order correction.

(i) A term linear in ψ(2).
This is the simplest one. In (10) taking the zeor order

in ∇ and
√

det g , and take the 2nd order in ψ, one obtain
a second order correction to the metric

2
det ḡ

Āρσαβε
αµεβν∇̄µ∇̄νψ

(2)

(ii) The first-order correction for 1/
√

det g.
In (10), taking the first-order correction for 1/

√
det g

and ψ, and taking the zero order of ∇, we obtain another
second order correction to the actual metric.

To calculate the first-order correction for 1/
√

det g we
assume a general matrix of the form A = A0 + δA1 with
δ << 1. Than expanding 1

√
det A

in powers of δ one up to
first order we find

1
√

det A
=

1
√

det A0
− δ

Tr
(
A0 ∗ adj A1

)
2 det A0

3/2
+ O (δ)2 .

Using this identity in the first order correction to
1/
√

det g one finds a 2nd order correction to the actual
metric

−
1

det ḡ2 Tr
(
ḡ adj g(1)

)
Āρσαβε

αµεβν∇̄µ∇̄νψ
(1)

(iii) The first-order correction for connection coeffi-
cients in the covariant derivatives.

Taking the zero order correction of 1/
√

det g, and the
first order correction of∇ andψ, we find the third contri-
bution to the second order correction to the actual metric.

The covariant derivative ∇γ∇̄κψ1 can be written ex-
plicitly as

∇γ∇̄κψ
(1) = ∂γκψ

(1)
− Γαγκ∂αψ

(1)

that is we search for the first order correction to the
christoffel symbols.

The expression for the Christoffel symbol is given by

Γ
µ
νρ =

1
2
gµα

(
∂ρgαν + ∂νgαρ − ∂αgνρ

)
hence first order corrections arise either from gµα or from
derivatives of the metric in the braces.

Γ
µ
νρ = Γ̄

µ
νρ +

1
2

(
g(1)

)µα (
∂ρḡαν + ∂νḡαρ − ∂αḡνρ

)
+

1
2
ḡµα

(
∂ρg

(1)
αν + ∂νg

(1)
αρ − ∂αg

(1)
νρ

)
Notice that

(
g(1)

)µα
is a symbol for the first order correc-

tion to the inverse of the actual metric. Here we calculate
it: As before, assume A = A0 + δA1 is a matrix very close
to A1, that is δ << 1. Than expanding A−1 in powers of δ
one can easily verify that up to first order

A−1 = A−1
0 + δ

1
det A0

(
adj A1 − Tr

(
A0 ∗ adj A1

)
A−1

0

)
Using this identity we can write the first order correc-

tion to the christoffel symbol as

Γ
µ
νρ = Γ̄

µ
νρ + δΓ

µ
νρ

where

δΓ
µ
νρ =

(
cµβḡβγΓ̄

γ
νρ + ḡµβξβνρ

)
, (C1)

ξαβγ =
1
2

(
∂γg

(1)
αβ + ∂βg

(1)
αγ − ∂αg

(1)
βγ

)
,

and

cµν =
1

det ḡ

((
adj g(1)

)µν
− Tr

(
ḡ adj g(1)

)
ḡµν

)
.

wrapping it all together we get an explicit expression
for the second order correction to the actual metric

gµν = ḡµν + g(1)
µν + g(2)

µν + O(η3), (C2)

where

g
(1)
ρσ =

2
det ḡ

Āρσαβε̃
αµε̃βν∇̄µ∇̄νψ

(1),

g
(2)
ρσ =

2
det ḡ

Āρσαβε
αµεβν∇̄µ∇̄νψ

(2)

−
1

det ḡ2 Tr
(
ḡ adj g(1)

)
Āρσαβε

αµεβν∇̄µ∇̄νψ
(1)

−
2

det ḡ
Āρσαβε

αµεβνδΓγµν∂γψ
(1),

(C3)

Appendix D

Thermo-elastic systems respond to thermal changes
by either expanding or contracting. In the present con-
text, this means that the reference metric is temperature
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dependent. We will assume a 2D system satisfying a
linear heat equation.

Assume that for some spatially uniform temperature
T0 the surface is globally Euclidean. Furthermore, as-
sume that for small temperature deviations, the relative
elongation of a material line is proportional to the tem-
perature change, with an elongation coefficient α that
is both homogeneous and isotropic. As a result, every
volume element expands isotropically, giving rise to a
conformally-flat metric,

ḡ = e2α(T−T0)Eucl. (D1)

The Gaussian curvature for a reference metric of that
form is

K̄G = −α∆̄T, (D2)

where the Laplace-Beltrami operator ∆̄ is given by

∆̄ = e−2α(T−T0)∆ (D3)

and ∆ is the Euclidean Laplace operator, which is defined
on the reference manifold.

We can then calculate how thermal variations induce
residual stresses by solving the plane-stress problem for
a reference metric of the form (D1). A hidden, but plau-
sible assumption is that the elastic equilibration time is
significantly shorter than the thermal time scales.

Thus, in the reference manifold, the thermo-elastic
problem consists of solving the time-dependent heat
equation

∂T
∂t

= D∆̄T + Q, (D4)

where Q is a heat source, along with initial and bound-
ary conditions. At every time t we have to solve the
plane-stress problem for the reference metric (D1). This
implies a non-trivial coupling between heat and elastic-
ity, whereby temperature variations change the intrinsic
geometry of the body, which in turn changes the laws of
thermal conduction (via the Laplace-Beltrami operator).
At steady state and in the absence of heat sources,

∆̄T = 0. (D5)

It follows by (D2) that K̄G = 0, i.e., the induced refer-
ence metric is locally Euclidean. In a simply connected
domain no residual stresses appear. In an annular do-
main, however, the reference metric may not be globally
Euclidean, hence residual stresses may appear. Locally
Euclidean geometries were studied in detail in [18]. Ba-
sic example for locally Euclidean reference metric that
induce residual stresses are that of a disclination, and
dislocation. Reference metrics that are non-Euclidean
may appear when source terms are included. At steady
state, assuming that Q is time-independent,

D∆̄T + Q = De−2αT∆T + Q = 0. (D6)
By (D2) the corresponding reference Gaussian curvature
is

K̄G =
αQ
D
. (D7)

In particular, a spatially-uniform heat source induces a
manifold of constant reference Gaussian curvature.
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